Spaces:
Sleeping
Sleeping
fix(model): fix yolo v8
Browse files- Dockerfile +2 -0
- requirements.txt +2 -1
- tasks/image.py +11 -3
Dockerfile
CHANGED
@@ -4,6 +4,8 @@
|
|
4 |
FROM python:3.9
|
5 |
|
6 |
RUN useradd -m -u 1000 user
|
|
|
|
|
7 |
USER user
|
8 |
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
|
|
|
4 |
FROM python:3.9
|
5 |
|
6 |
RUN useradd -m -u 1000 user
|
7 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
8 |
+
|
9 |
USER user
|
10 |
ENV PATH="/home/user/.local/bin:$PATH"
|
11 |
|
requirements.txt
CHANGED
@@ -11,4 +11,5 @@ librosa==0.10.2.post1
|
|
11 |
numpy==1.26.4
|
12 |
ultralytics==8.3.68
|
13 |
ultralytics-thop==2.0.14
|
14 |
-
opencv-python==4.11.0.86
|
|
|
|
11 |
numpy==1.26.4
|
12 |
ultralytics==8.3.68
|
13 |
ultralytics-thop==2.0.14
|
14 |
+
#opencv-python==4.11.0.86
|
15 |
+
python-dotenv==1.0.0
|
tasks/image.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
6 |
import random
|
7 |
import os
|
|
|
8 |
|
9 |
from .utils.evaluation import ImageEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
@@ -14,7 +15,7 @@ load_dotenv()
|
|
14 |
|
15 |
router = APIRouter()
|
16 |
|
17 |
-
DESCRIPTION = "
|
18 |
ROUTE = "/image"
|
19 |
|
20 |
def parse_boxes(annotation_string):
|
@@ -120,7 +121,9 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
120 |
pred_boxes = []
|
121 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
122 |
|
123 |
-
|
|
|
|
|
124 |
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
125 |
annotation = example.get("annotations", "").strip()
|
126 |
has_smoke = len(annotation) > 0
|
@@ -137,9 +140,14 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
137 |
image_true_boxes = parse_boxes(annotation)
|
138 |
true_boxes_list.append(image_true_boxes)
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
pred_boxes.append(pred_box_list)
|
142 |
|
|
|
143 |
|
144 |
#--------------------------------------------------------------------------------------------
|
145 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
6 |
import random
|
7 |
import os
|
8 |
+
from ultralytics import YOLO
|
9 |
|
10 |
from .utils.evaluation import ImageEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
15 |
|
16 |
router = APIRouter()
|
17 |
|
18 |
+
DESCRIPTION = "Simple YOLOv8n model"
|
19 |
ROUTE = "/image"
|
20 |
|
21 |
def parse_boxes(annotation_string):
|
|
|
121 |
pred_boxes = []
|
122 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
123 |
|
124 |
+
n_examples = len(test_dataset)
|
125 |
+
for i, example in enumerate(test_dataset):
|
126 |
+
print(f"Running {i+1} of {n_examples}")
|
127 |
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
128 |
annotation = example.get("annotations", "").strip()
|
129 |
has_smoke = len(annotation) > 0
|
|
|
140 |
image_true_boxes = parse_boxes(annotation)
|
141 |
true_boxes_list.append(image_true_boxes)
|
142 |
|
143 |
+
try:
|
144 |
+
pred_box_list = get_boxes_list(model_preds)[0] # With one bbox to start with (as in the random baseline)
|
145 |
+
except:
|
146 |
+
print("No boxes found")
|
147 |
+
pred_box_list = [0, 0, 0, 0] # Hacky way to make sure that compute_max_iou doesn't fail
|
148 |
pred_boxes.append(pred_box_list)
|
149 |
|
150 |
+
|
151 |
|
152 |
#--------------------------------------------------------------------------------------------
|
153 |
# YOUR MODEL INFERENCE STOPS HERE
|