import os from openai import OpenAI import base64 from pydantic import BaseModel from PIL import Image import io import json import random class HouseFeature(BaseModel): age_in_years: int solar_panel: bool green_roof: bool is_property: bool IMAGE_PATH = "house7.png" # Open the image file and encode it as a base64 string def encode_image(image, output_format="JPEG"): # Resize the image image = image.resize((256, 256)) # Convert the image to bytes buffered = io.BytesIO() # Save the image in the specified format image.save(buffered, format=output_format) image_bytes = buffered.getvalue() # Encode the image bytes to base64 base64_encoded_data = base64.b64encode(image_bytes) # Convert bytes to string base64_encoded_string = base64_encoded_data.decode("utf-8") return base64_encoded_string def openai_completion(base64_image): # Initialize OpenAI API key from environment variable client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) MODEL = "gpt-4o-mini" response = client.beta.chat.completions.parse( model=MODEL, messages=[ { "role": "system", "content": "You are a house expert who can estimate house's age. Help me identify houses!", }, { "role": "user", "content": [ { "type": "text", "text": "Estimate the house's age and whether it has solar panels.", }, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, }, ], }, ], max_tokens=300, response_format=HouseFeature, ) return response.choices[0].message.content def sustainability_scorer(house_features: HouseFeature): # Calculate sustainability score based on house features, best score 100, lowest 30 score = 0 if house_features.is_property: if house_features.age_in_years < 10: score += 70 elif house_features.age_in_years < 20: score += 65 elif house_features.age_in_years < 30: score += 45 else: score += 25 if house_features.solar_panel: score += 40 if house_features.green_roof: score += 30 score += random.randint(0, 5) # score can't be over 100 score = min(score, 100) if score > 80: color = "green" feedback = "🌟 Excellent! 🌟" elif score > 50: color = "orange" feedback = "👍 Good!" else: color = "red" feedback = "❗️ Needs Improvement" return f"