Spaces:
Sleeping
Sleeping
File size: 16,612 Bytes
0108542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# -*- coding: utf-8 -*-
# The Procrustes library provides a set of functions for transforming
# a matrix to make it as similar as possible to a target matrix.
#
# Copyright (C) 2017-2022 The QC-Devs Community
#
# This file is part of Procrustes.
#
# Procrustes is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# Procrustes is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>
#
# --
"""Orthogonal Procrustes Module."""
# import warnings
from typing import Optional
import numpy as np
from .utils import compute_error, ProcrustesResult, setup_input_arrays
import scipy
__all__ = [
"orthogonal",
"orthogonal_2sided",
]
def orthogonal(
a: np.ndarray,
b: np.ndarray,
pad: bool = True,
translate: bool = False,
scale: bool = False,
unpad_col: bool = False,
unpad_row: bool = False,
check_finite: bool = True,
weight: Optional[np.ndarray] = None,
lapack_driver: str = "gesvd",
) -> ProcrustesResult:
r"""Perform orthogonal Procrustes.
Given a matrix :math:`\mathbf{A}_{m \times n}` and a reference matrix :math:`\mathbf{B}_{m
\times n}`, find the orthogonal transformation matrix :math:`\mathbf{Q}_{n
\times n}` that makes :math:`\mathbf{AQ}` as close as possible to :math:`\mathbf{B}`.
In other words,
.. math::
\underbrace{\min}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger \right\}}
\|\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2
This Procrustes method requires the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices to
have the same shape, which is gauranteed with the default ``pad`` argument for any given
:math:`\mathbf{A}` and :math:`\mathbf{B}` matrices. In preparing the :math:`\mathbf{A}` and
:math:`\mathbf{B}` matrices, the (optional) order of operations is: **1)** unpad zero
rows/columns, **2)** translate the matrices to the origin, **3)** weight entries of
:math:`\mathbf{A}`, **4)** scale the matrices to have unit norm, **5)** pad matrices with zero
rows/columns so they have the same shape.
Parameters
----------
a : ndarray
The 2D-array :math:`\mathbf{A}` which is going to be transformed.
b : ndarray
The 2D-array :math:`\mathbf{B}` representing the reference matrix.
pad : bool, optional
Add zero rows (at the bottom) and/or columns (to the right-hand side) of matrices
:math:`\mathbf{A}` and :math:`\mathbf{B}` so that they have the same shape.
translate : bool, optional
If True, both arrays are centered at origin (columns of the arrays will have mean zero).
scale : bool, optional
If True, both arrays are normalized with respect to the Frobenius norm, i.e.,
:math:`\text{Tr}\left[\mathbf{A}^\dagger\mathbf{A}\right] = 1` and
:math:`\text{Tr}\left[\mathbf{B}^\dagger\mathbf{B}\right] = 1`.
unpad_col : bool, optional
If True, zero columns (with values less than 1.0e-8) on the right-hand side of the intial
:math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed.
unpad_row : bool, optional
If True, zero rows (with values less than 1.0e-8) at the bottom of the intial
:math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed.
check_finite : bool, optional
If True, convert the input to an array, checking for NaNs or Infs.
weight : ndarray, optional
The 1D-array representing the weights of each row of :math:`\mathbf{A}`. This defines the
elements of the diagonal matrix :math:`\mathbf{W}` that is multiplied by :math:`\mathbf{A}`
matrix, i.e., :math:`\mathbf{A} \rightarrow \mathbf{WA}`.
lapack_driver : {'gesvd', 'gesdd'}, optional
Whether to use the more efficient divide-and-conquer approach ('gesdd') or the more robust
general rectangular approach ('gesvd') to compute the singular-value decomposition with
`scipy.linalg.svd`.
Returns
-------
res : ProcrustesResult
The Procrustes result represented as a class:`utils.ProcrustesResult` object.
Notes
-----
The optimal orthogonal matrix is obtained by,
.. math::
\mathbf{Q}^{\text{opt}} =
\arg \underbrace{\min}_{\left\{\mathbf{Q} \left| {\mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger}
\right. \right\}} \|\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2 =
\arg \underbrace{\max}_{\left\{\mathbf{Q} \left| {\mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger}
\right. \right\}} \text{Tr}\left[\mathbf{Q^\dagger}\mathbf{A^\dagger}\mathbf{B}\right]
The solution is obtained using the singular value decomposition (SVD) of the
:math:`\mathbf{A}^\dagger \mathbf{B}` matrix,
.. math::
\mathbf{A}^\dagger \mathbf{B} &= \tilde{\mathbf{U}} \tilde{\mathbf{\Sigma}}
\tilde{\mathbf{V}}^{\dagger} \\
\mathbf{Q}^{\text{opt}} &= \tilde{\mathbf{U}} \tilde{\mathbf{V}}^{\dagger}
The singular values are always listed in decreasing order, with the smallest singular
value in the bottom-right-hand corner of :math:`\tilde{\mathbf{\Sigma}}`.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import ortho_group
>>> from procrustes import orthogonal
>>> a = np.random.rand(5, 3) # random input matrix
>>> q = ortho_group.rvs(3) # random orthogonal transformation
>>> b = np.dot(a, q) + np.random.rand(1, 3) # random target matrix
>>> result = orthogonal(a, b, translate=True, scale=False)
>>> print(result.error) # error (should be zero)
>>> print(result.t) # transformation matrix (same as q)
>>> print(result.new_a) # translated array a
>>> print(result.new_b) # translated array b
"""
# check inputs
new_a, new_b = setup_input_arrays(
a,
b,
unpad_col,
unpad_row,
pad,
translate,
scale,
check_finite,
weight,
)
if new_a.shape != new_b.shape:
raise ValueError(
f"Shape of A and B does not match: {new_a.shape} != {new_b.shape} "
"Check pad, unpad_col, and unpad_row arguments."
)
# calculate SVD of A.T * B
u, _, vt = scipy.linalg.svd(np.dot(new_a.T, new_b), lapack_driver=lapack_driver)
# compute optimal orthogonal transformation
u_opt = np.dot(u, vt)
# compute one-sided error
error = compute_error(new_a, new_b, u_opt)
return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=u_opt, s=None)
def orthogonal_2sided(
a: np.ndarray,
b: np.ndarray,
single: bool = True,
pad: bool = True,
translate: bool = False,
scale: bool = False,
unpad_col: bool = False,
unpad_row: bool = False,
check_finite: bool = True,
weight: Optional[np.ndarray] = None,
lapack_driver: str = "gesvd",
) -> ProcrustesResult:
r"""Perform two-sided orthogonal Procrustes with one- or two-transformations.
**Two Transformations:** Given a matrix :math:`\mathbf{A}_{m \times n}` and a reference matrix
:math:`\mathbf{B}_{m \times n}`, find two :math:`n \times n` orthogonal
transformation matrices :math:`\mathbf{Q}_1^\dagger` and :math:`\mathbf{Q}_2` that makes
:math:`\mathbf{Q}_1^\dagger\mathbf{A}\mathbf{Q}_2` as close as possible to :math:`\mathbf{B}`.
In other words,
.. math::
\underbrace{\text{min}}_{\left\{ {\mathbf{Q}_1 \atop \mathbf{Q}_2} \left|
{\mathbf{Q}_1^{-1} = \mathbf{Q}_1^\dagger \atop \mathbf{Q}_2^{-1} =
\mathbf{Q}_2^\dagger} \right. \right\}}
\|\mathbf{Q}_1^\dagger \mathbf{A} \mathbf{Q}_2 - \mathbf{B}\|_{F}^2
**Single Transformations:** Given a **symmetric** matrix :math:`\mathbf{A}_{n \times n}` and
a reference :math:`\mathbf{B}_{n \times n}`, find one orthogonal transformation
matrix :math:`\mathbf{Q}_{n \times n}` that makes :math:`\mathbf{A}` as close as possible to
:math:`\mathbf{B}`. In other words,
.. math::
\underbrace{\min}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger \right\}}
\|\mathbf{Q}^\dagger\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2
This Procrustes method requires the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices to
have the same shape, which is gauranteed with the default ``pad`` argument for any given
:math:`\mathbf{A}` and :math:`\mathbf{B}` matrices. In preparing the :math:`\mathbf{A}` and
:math:`\mathbf{B}` matrices, the (optional) order of operations is: **1)** unpad zero
rows/columns, **2)** translate the matrices to the origin, **3)** weight entries of
:math:`\mathbf{A}`, **4)** scale the matrices to have unit norm, **5)** pad matrices with zero
rows/columns so they have the same shape.
Parameters
----------
a : ndarray
The 2D-array :math:`\mathbf{A}` which is going to be transformed.
b : ndarray
The 2D-array :math:`\mathbf{B}` representing the reference matrix.
single : bool, optional
If True, single transformation is used (i.e., :math:`\mathbf{Q}_1=\mathbf{Q}_2=\mathbf{Q}`),
otherwise, two transformations are used.
pad : bool, optional
Add zero rows (at the bottom) and/or columns (to the right-hand side) of matrices
:math:`\mathbf{A}` and :math:`\mathbf{B}` so that they have the same shape.
translate : bool, optional
If True, both arrays are centered at origin (columns of the arrays will have mean zero).
scale : bool, optional
If True, both arrays are normalized with respect to the Frobenius norm, i.e.,
:math:`\text{Tr}\left[\mathbf{A}^\dagger\mathbf{A}\right] = 1` and
:math:`\text{Tr}\left[\mathbf{B}^\dagger\mathbf{B}\right] = 1`.
unpad_col : bool, optional
If True, zero columns (with values less than 1.0e-8) on the right-hand side of the intial
:math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed.
unpad_row : bool, optional
If True, zero rows (with values less than 1.0e-8) at the bottom of the intial
:math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed.
check_finite : bool, optional
If True, convert the input to an array, checking for NaNs or Infs.
weight : ndarray, optional
The 1D-array representing the weights of each row of :math:`\mathbf{A}`. This defines the
elements of the diagonal matrix :math:`\mathbf{W}` that is multiplied by :math:`\mathbf{A}`
matrix, i.e., :math:`\mathbf{A} \rightarrow \mathbf{WA}`.
lapack_driver : {"gesvd", "gesdd"}, optional
Used in the singular value decomposition function from SciPy. Only allowed two options,
with "gesvd" being less-efficient than "gesdd" but is more robust. Default is "gesvd".
Returns
-------
res : ProcrustesResult
The Procrustes result represented as a class:`utils.ProcrustesResult` object.
Notes
-----
**Two-Sided Orthogonal Procrustes with Two Transformations:**
The optimal orthogonal transformations are obtained by:
.. math::
\mathbf{Q}_{1}^{\text{opt}}, \mathbf{Q}_{2}^{\text{opt}} = \arg
\underbrace{\text{min}}_{\left\{ {\mathbf{Q}_1 \atop \mathbf{Q}_2} \left|
{\mathbf{Q}_1^{-1} = \mathbf{Q}_1^\dagger \atop \mathbf{Q}_2^{-1} =
\mathbf{Q}_2^\dagger} \right. \right\}}
\|\mathbf{Q}_1^\dagger \mathbf{A} \mathbf{Q}_2 - \mathbf{B}\|_{F}^2 = \arg
\underbrace{\text{max}}_{\left\{ {\mathbf{Q}_1 \atop \mathbf{Q}_2} \left|
{\mathbf{Q}_1^{-1} = \mathbf{Q}_1^\dagger \atop \mathbf{Q}_2^{-1} =
\mathbf{Q}_2^\dagger} \right. \right\}}
\text{Tr}\left[\mathbf{Q}_2^\dagger\mathbf{A}^\dagger\mathbf{Q}_1\mathbf{B} \right]
This is solved by taking the singular value decomposition (SVD) of :math:`\mathbf{A}` and
:math:`\mathbf{B}`,
.. math::
\mathbf{A} = \mathbf{U}_A \mathbf{\Sigma}_A \mathbf{V}_A^\dagger \\
\mathbf{B} = \mathbf{U}_B \mathbf{\Sigma}_B \mathbf{V}_B^\dagger
Then the two optimal orthogonal matrices are given by,
.. math::
\mathbf{Q}_1^{\text{opt}} = \mathbf{U}_A \mathbf{U}_B^\dagger \\
\mathbf{Q}_2^{\text{opt}} = \mathbf{V}_A \mathbf{V}_B^\dagger
**Two-Sided Orthogonal Procrustes with Single-Transformation:**
The optimal orthogonal transformation is obtained by:
.. math::
\mathbf{Q}^{\text{opt}} = \arg
\underbrace{\min}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger \right\}}
\|\mathbf{Q}^\dagger\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2 = \arg
\underbrace{\text{max}}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger\right\}}
\text{Tr}\left[\mathbf{Q}^\dagger\mathbf{A}^\dagger\mathbf{Q}\mathbf{B} \right]
Using the singular value decomposition (SVD) of :math:`\mathbf{A}` and :math:`\mathbf{B}`,
.. math::
\mathbf{A} = \mathbf{U}_A \mathbf{\Lambda}_A \mathbf{U}_A^\dagger \\
\mathbf{B} = \mathbf{U}_B \mathbf{\Lambda}_B \mathbf{U}_B^\dagger
The optimal orthogonal matrix :math:`\mathbf{Q}^\text{opt}` is obtained through,
.. math::
\mathbf{Q}^\text{opt} = \mathbf{U}_A \mathbf{S} \mathbf{U}_B^\dagger
where :math:`\mathbf{S}` is a diagonal matrix with :math:`\pm{1}` elements,
.. math::
\mathbf{S} =
\begin{bmatrix}
{ \pm 1} & 0 &\cdots &0 \\
0 &{ \pm 1} &\ddots &\vdots \\
\vdots &\ddots &\ddots &0\\
0 &\cdots &0 &{ \pm 1}
\end{bmatrix}
The matrix :math:`\mathbf{S}` is chosen to be the identity matrix.
Examples
--------
>>> import numpy as np
>>> a = np.array([[30, 33, 20], [33, 53, 43], [20, 43, 46]])
>>> b = np.array([[ 22.78131838, -0.58896768,-43.00635291, 0., 0.],
... [ -0.58896768, 16.77132475, 0.24289990, 0., 0.],
... [-43.00635291, 0.2428999 , 89.44735687, 0., 0.],
... [ 0. , 0. , 0. , 0., 0.]])
>>> res = orthogonal_2sided(a, b, single=True, pad=True, unpad_col=True)
>>> res.t
array([[ 0.25116633, 0.76371527, 0.59468855],
[-0.95144277, 0.08183302, 0.29674906],
[ 0.17796663, -0.64034549, 0.74718507]])
>>> res.error
1.9646186414076689e-26
"""
# if translate:
# warnings.warn(
# "The translation matrix was not well defined. \
# Two sided rotation and translation don't commute.",
# stacklevel=2,
# )
# Check inputs
new_a, new_b = setup_input_arrays(
a,
b,
unpad_col,
unpad_row,
pad,
translate,
scale,
check_finite,
weight,
)
# check symmetry if single_transform=True
if single:
if not np.allclose(new_a.T, new_a):
raise ValueError(
f"Array A with {new_a.shape} shape is not symmetric. "
"Check pad, unpad_col, and unpad_row arguments."
)
if not np.allclose(new_b.T, new_b):
raise ValueError(
f"Array B with {new_b.shape} shape is not symmetric. "
"Check pad, unpad_col, and unpad_row arguments."
)
# two-sided orthogonal Procrustes with one-transformations
if single:
_, ua = np.linalg.eigh(new_a)
_, ub = np.linalg.eigh(new_b)
u_opt = np.dot(ua, ub.T)
# compute one-sided error
error = compute_error(new_a, new_b, u_opt, u_opt.T)
return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=u_opt, s=u_opt.T)
# two-sided orthogonal Procrustes with two-transformations
ua, _, vta = scipy.linalg.svd(new_a, lapack_driver=lapack_driver)
ub, _, vtb = scipy.linalg.svd(new_b, lapack_driver=lapack_driver)
u_opt1 = np.dot(ua, ub.T)
u_opt2 = np.dot(vta.T, vtb)
error = compute_error(new_a, new_b, u_opt2, u_opt1.T)
return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=u_opt2, s=u_opt1.T)
|