inner_lexicon / app.py
Guy24's picture
adding application
95d29eb
raw
history blame
13.9 kB
import torch
from exceptiongroup import catch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import pandas as pd
from functools import lru_cache
# ----------------------------------------------------------------------
# IMPORTANT: This version uses the PatchscopesRetriever implementation
# from the Tokens2Words paper (https://github.com/schwartz-lab-NLP/Tokens2Words)
# ----------------------------------------------------------------------
import torch
from tqdm import tqdm
from abc import ABC, abstractmethod
from enums import MultiTokenKind, RetrievalTechniques
from processor import RetrievalProcessor
from logit_lens import ReverseLogitLens
from model_utils import extract_token_i_hidden_states
class WordRetrieverBase(ABC):
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
@abstractmethod
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
pass
class PatchscopesRetriever(WordRetrieverBase):
def __init__(
self,
model,
tokenizer,
representation_prompt: str = "{word}",
patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)",
prompt_target_placeholder: str = "{word}",
representation_token_idx_to_extract: int = -1,
num_tokens_to_generate: int = 10,
):
super().__init__(model, tokenizer)
self.prompt_input_ids, self.prompt_target_idx = \
self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder)
self._prepare_representation_prompt = \
self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder)
self.representation_token_idx = representation_token_idx_to_extract
self.num_tokens_to_generate = num_tokens_to_generate
def _build_prompt_input_ids_template(self, prompt, target_placeholder):
prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else []
target_idx = []
if prompt:
assert target_placeholder is not None, \
"Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]"
prompt_parts = prompt.split(target_placeholder)
for part_i, prompt_part in enumerate(prompt_parts):
prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False)
if part_i < len(prompt_parts)-1:
target_idx += [len(prompt_input_ids)]
prompt_input_ids += [0]
else:
prompt_input_ids += [0]
target_idx = [len(prompt_input_ids)]
prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long)
target_idx = torch.tensor(target_idx, dtype=torch.long)
return prompt_input_ids, target_idx
def _build_representation_prompt_func(self, prompt, target_placeholder):
return lambda word: prompt.replace(target_placeholder, word)
def generate_states(self, tokenizer, word='Wakanda', with_prompt=True):
prompt = self.generate_prompt() if with_prompt else word
input_ids = tokenizer.encode(prompt, return_tensors='pt')
return input_ids
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None):
self.model.eval()
# insert hidden states into patchscopes prompt
if hidden_states.dim() == 1:
hidden_states = hidden_states.unsqueeze(0)
inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0)
batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype)
batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device)
attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat(
len(hidden_states), 1).to(self.model.device)
num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate
with torch.no_grad():
patchscope_outputs = self.model.generate(
do_sample=False, num_beams=1, top_p=1.0, temperature=None,
inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask,
max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, )
decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs)
return decoded_patchscope_outputs
def extract_hidden_states(self, word):
representation_input = self._prepare_representation_prompt(word)
last_token_hidden_states = extract_token_i_hidden_states(
self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False)
return last_token_hidden_states
def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None):
last_token_hidden_states = self.extract_hidden_states(word)
patchscopes_description_by_layers = self.retrieve_word(
last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate)
return patchscopes_description_by_layers, last_token_hidden_states
class ReverseLogitLensRetriever(WordRetrieverBase):
def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16):
super().__init__(model, tokenizer)
self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype)
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
result = self.reverse_logit_lens(hidden_states, layer_idx)
token = self.tokenizer.decode(torch.argmax(result, dim=-1).item())
return token
class AnalysisWordRetriever:
def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True,
model_name='LLaMa-2B', device='cuda', dataset=None):
self.model = model.to(device)
self.tokenizer = tokenizer
self.multi_token_kind = multi_token_kind
self.num_tokens_to_generate = num_tokens_to_generate
self.add_context = add_context
self.model_name = model_name
self.device = device
self.dataset = dataset
self.retriever = self._initialize_retriever()
self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural
else RetrievalTechniques.ReverseLogitLens)
self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁'
self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind,
self.num_tokens_to_generate, self.add_context, self.model_name,
self.whitespace_token)
def _initialize_retriever(self):
if self.multi_token_kind == MultiTokenKind.Natural:
return PatchscopesRetriever(self.model, self.tokenizer)
else:
return ReverseLogitLensRetriever(self.model, self.tokenizer)
def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000):
self.model.eval()
results = []
for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name):
tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to(
self.device)
tokens = tokenized_input.input_ids[0]
print(f'Processing text: {text}')
i = 5
while i < len(tokens):
if self.multi_token_kind == MultiTokenKind.Natural:
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word(
tokens, i, device=self.device)
elif self.multi_token_kind == MultiTokenKind.Typo:
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo(
tokens, i, device=self.device)
else:
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated(
tokens, i, device=self.device)
if len(word_tokens) > 1:
with torch.no_grad():
outputs = self.model(**tokenized_combined_text, output_hidden_states=True)
hidden_states = outputs.hidden_states
for layer_idx, hidden_state in enumerate(hidden_states):
postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0)
retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx,
num_tokens_to_generate=len(word_tokens))
results.append({
'text': combined_text,
'original_word': original_word,
'word': word,
'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens),
'num_tokens': len(word_tokens),
'layer': layer_idx,
'retrieved_word_str': retrieved_word_str,
'context': "With Context" if self.add_context else "Without Context"
})
else:
i = j
return results
DEFAULT_MODEL = "meta-llama/Llama-3.1-8B" # light default so the demo boots everywhere
DEVICE = (
"cuda" if torch.cuda.is_available() else 'cpu'
)
@lru_cache(maxsize=4)
def get_model_and_tokenizer(model_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 ,
output_hidden_states=True,
).to(DEVICE)
model.eval()
return model, tokenizer
def find_last_token_index(full_ids, word_ids):
"""Locate end position of word_ids inside full_ids (first match)."""
for i in range(len(full_ids) - len(word_ids) + 1):
if full_ids[i : i + len(word_ids)] == word_ids:
return i + len(word_ids) - 1
return None
def analyse_word(model_name: str, extraction_template: str, word: str, patchscopes_template: str):
try:
model, tokenizer = get_model_and_tokenizer(model_name)
# Build extraction prompt (where hidden states will be collected)
extraction_prompt ="X"
# Identify last token position of the *word* inside the prompt IDs
word_token_ids = tokenizer.encode(word, add_special_tokens=False)
# Instantiate Patchscopes retriever
patch_retriever = PatchscopesRetriever(
model,
tokenizer,
extraction_prompt,
patchscopes_template,
prompt_target_placeholder="X",
)
# Run retrieval for the word across all layers (one pass)
retrieved_words = patch_retriever.get_hidden_states_and_retrieve_word(
word,
num_tokens_to_generate=len(tokenizer.tokenize(word)),
)[0]
# Build a table summarising which layers match
records = []
matches = 0
for layer_idx, ret_word in enumerate(retrieved_words):
match = ret_word.strip(" ") == word.strip(" ")
if match:
matches += 1
records.append({"Layer": layer_idx, "Retrieved": ret_word, "Match?": "✓" if match else ""})
df = pd.DataFrame(records)
def _style(row):
color = "background-color: lightgreen" if row["Match?"] else ""
return [color] * len(row)
html_table = df.style.apply(_style, axis=1).hide(axis="index").to_html(escape=False)
sub_tokens = tokenizer.convert_ids_to_tokens(word_token_ids)
top = (
f"<p><b>Sub‑word tokens:</b> {' , '.join(sub_tokens)}</p>"
f"<p><b>Total matched layers:</b> {matches} / {len(retrieved_words)}</p>"
)
return top + html_table
except Exception as e:
return f"<p style='color:red'>❌ Error: {str(e)}</p>"
# ----------------------------- GRADIO UI -------------------------------
with gr.Blocks(theme="soft") as demo:
gr.Markdown(
"""# Tokens→Words Viewer\nInteractively inspect how hidden‑state patching (Patchscopes) reveals a word's detokenised representation across model layers."""
)
with gr.Row():
model_name = gr.Dropdown(
label="🤖 Model",
choices=[DEFAULT_MODEL, "mistralai/Mistral-7B-v0.1", "meta-llama/Llama-2-7b", "Qwen/Qwen2-7B"],
value=DEFAULT_MODEL,
)
extraction_template = gr.Textbox(
label="Extraction prompt (use X as placeholder)",
value="repeat the following word X twice: 1)X 2)",
)
patchscopes_template = gr.Textbox(
label="Patchscopes prompt (use X as placeholder)",
value="repeat the following word X twice: 1)X 2)",
)
word_box = gr.Textbox(label="Word to test", value="interpretable")
run_btn = gr.Button("Analyse")
out_html = gr.HTML()
run_btn.click(
analyse_word,
inputs=[model_name, extraction_template, word_box, patchscopes_template],
outputs=out_html,
)
if __name__ == "__main__":
demo.launch()