inner_lexicon / model_utils.py
Guy24's picture
adding application
d844e87
raw
history blame contribute delete
12.3 kB
from tqdm import tqdm
from typing import Iterable, List, Union
from transformers import PreTrainedModel, PreTrainedTokenizer
import torch
from torch import nn
from sklearn.linear_model import LinearRegression
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
def extract_token_i_hidden_states(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
inputs: Union[str, List[str]],
token_idx_to_extract: int = -1,
batch_size: int = 1,
layers_to_extract: List[int] = None,
return_dict: bool = True,
verbose: bool = True,
) -> torch.Tensor:
device = model.device
model.eval()
if isinstance(inputs, str):
inputs = [inputs]
if layers_to_extract is None:
layers_to_extract = list(range(1, model.config.num_hidden_layers + 1)) # extract all but initial embeddings
all_hidden_states = {layer: [] for layer in layers_to_extract}
with torch.no_grad():
for i in tqdm(range(0, len(inputs), batch_size), desc="Extracting hidden states", unit="batch", disable=not verbose):
input_ids = tokenizer(inputs[i:i+batch_size], return_tensors="pt", return_attention_mask=False)['input_ids']
try:
outputs = model(input_ids.to(device), output_hidden_states=True)
except:
import pdb; pdb.set_trace()
# from transformers import AutoModelForCausalLM
# model2 = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", torch_dtype=torch.bfloat16).to(device)
for input_i in range(len(input_ids)):
for layer in layers_to_extract:
hidden_states = outputs.hidden_states[layer]
all_hidden_states[layer].append(hidden_states[:, token_idx_to_extract, :].detach().cpu())
for layer in all_hidden_states:
all_hidden_states[layer] = torch.concat(all_hidden_states[layer], dim=0)
if not return_dict:
all_hidden_states = torch.concat([all_hidden_states[layer] for layer in layers_to_extract], dim=0)
return all_hidden_states
def extract_vocab_hidden_states(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
tokens_ids_to_extract: Iterable[int] = None,
prompt: str = "{target}",
prompt_target: str = "{target}",
batch_size: int = 128,
layers_to_extract: List[int] = None
) -> torch.Tensor:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
if layers_to_extract is None:
layers_to_extract = list(range(1, model.config.num_hidden_layers + 1)) # extract all but initial embeddings
all_hidden_states = {layer: [] for layer in layers_to_extract}
tokens_ids_to_extract = tokens_ids_to_extract if tokens_ids_to_extract is not None else range(tokenizer.vocab_size)
tokens_to_extract = [tokenizer.decode(tok_id) for tok_id in tokens_ids_to_extract]
# add pad token if necessary
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
with torch.no_grad():
for i in tqdm(range(0, len(tokens_to_extract), batch_size), desc="Extracting hidden states", unit="batch"):
prompts = [prompt.replace(prompt_target, target) for target in tokens_to_extract[i:i+batch_size]]
input_ids = tokenizer(prompts, return_tensors="pt", padding=True, padding_side="left")["input_ids"]
# input_ids = tokenizer(prompts, return_tensors="pt")["input_ids"]
outputs = model(input_ids.to(device), output_hidden_states=True)
for layer in layers_to_extract:
hidden_states = outputs.hidden_states[layer]
all_hidden_states[layer].append(hidden_states[:, -1, :].detach().cpu())
for layer in all_hidden_states:
all_hidden_states[layer] = torch.concat(all_hidden_states[layer], dim=0)
return all_hidden_states
def get_vocab_tokens(tokenizer: PreTrainedTokenizer, min_word_len: int = None):
vocab_size = tokenizer.vocab_size
tokens = list(range(vocab_size))
if min_word_len:
tokens_str = [tokenizer.decode(i) for i in tokens]
tokens_len = [len(x) for x in tokens_str]
tokens = [tok for tok, tok_len in zip(tokens, tokens_len) if tok_len >= min_word_len]
return tokens
def learn_linear_map(X: torch.Tensor, Y: torch.Tensor, fit_intercept=False):
input_dtype = X.dtype
linear_reg = LinearRegression(fit_intercept=fit_intercept).fit(X.cpu().to(float).numpy(), Y.cpu().to(float).numpy())
linear_map = nn.Linear(X.size(1), Y.size(1), bias=fit_intercept)
with torch.no_grad():
linear_map.weight.data = torch.Tensor(linear_reg.coef_.T)
if fit_intercept:
linear_map.bias.data = torch.Tensor(linear_reg.intercept_)
linear_map = linear_map.to(input_dtype)
return linear_map
def train_model(
model,
dataloader,
optimizer,
loss_func="mse",
scheduler=None,
num_epochs=5,
gradient_accumulation_steps=1,
max_grads_norm=1.0,
):
"""
Trains a two-layer MLP to map hidden states from X to Y.
Parameters:
X (torch.Tensor): Input tensor of shape (N, D).
Y (torch.Tensor): Target tensor of shape (N, D).
activation_func (nn.Module): Activation function for the hidden layer. Default is SiLU.
lr (float): Learning rate. Default is 0.001.
weight_decay (float): Weight decay for the optimizer. Default is 0.0.
loss_func (str): Loss function to use ('mse', 'huber', 'cosine'). Default is 'mse'.
lr_schedule (str): Learning rate schedule. Default is 'linear'.
num_epochs (int): Number of training epochs. Default is 20.
batch_size (int): Batch size for DataLoader. Default is 32.
gradient_accumulation_steps (int): Number of steps to accumulate gradients. Default is 1.
Returns:
nn.Module: Trained MLP model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Select loss function
if loss_func == "mse":
criterion = nn.MSELoss()
elif loss_func == "huber":
criterion = nn.HuberLoss()
elif loss_func == "cosine":
criterion = nn.CosineEmbeddingLoss()
else:
raise ValueError("Unsupported loss function. Choose from 'mse', 'huber', or 'cosine'.")
# Training loop
model.train()
for epoch in range(num_epochs):
epoch_loss = 0.0
for i, (x_batch, y_batch) in enumerate(dataloader):
outputs = model(x_batch.to(device))
if loss_func == "cosine":
# Cosine loss requires an additional target tensor of 1s
loss = criterion(outputs, y_batch.to(device), torch.ones(x_batch.size(0)))
else:
loss = criterion(outputs, y_batch.to(device))
loss = loss / gradient_accumulation_steps
loss.backward()
if max_grads_norm is not None:
nn.utils.clip_grad_norm_(model.parameters(), max_grads_norm)
if (i + 1) % gradient_accumulation_steps == 0 or (i + 1) == len(dataloader):
optimizer.step()
optimizer.zero_grad()
if scheduler:
scheduler.step()
epoch_loss += loss.item() * gradient_accumulation_steps
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {epoch_loss / len(dataloader):.6f}")
return model.cpu()
def learn_mlp(
X: torch.Tensor, Y: torch.Tensor,
activation_func=nn.SiLU,
batch_size=128,
lr=0.001,
weight_decay=0.0,
loss_func="mse",
lr_schedule="linear",
expansion_alpha=1.0,
num_epochs=5,
gradient_accumulation_steps=1,
max_grads_norm=1.0,
):
"""
Trains a two-layer MLP to map hidden states from X to Y.
Parameters:
X (torch.Tensor): Input tensor of shape (N, D).
Y (torch.Tensor): Target tensor of shape (N, D).
activation_func (nn.Module): Activation function for the hidden layer. Default is SiLU.
lr (float): Learning rate. Default is 0.001.
weight_decay (float): Weight decay for the optimizer. Default is 0.0.
loss_func (str): Loss function to use ('mse', 'huber', 'cosine'). Default is 'mse'.
lr_schedule (str): Learning rate schedule. Default is 'linear'.
num_epochs (int): Number of training epochs. Default is 20.
batch_size (int): Batch size for DataLoader. Default is 32.
gradient_accumulation_steps (int): Number of steps to accumulate gradients. Default is 1.
Returns:
nn.Module: Trained MLP model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_dim = X.shape[1]
hidden_dim = int(input_dim * expansion_alpha)
output_dim = Y.shape[1]
model = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
activation_func(),
nn.Linear(hidden_dim, output_dim)
).to(device)
# Optimizer
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
# DataLoader setup
dataset = TensorDataset(X, Y)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Learning rate scheduler
if lr_schedule == "linear":
total_steps = (len(dataloader) * num_epochs) // gradient_accumulation_steps
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda step: 1 - step / total_steps)
else:
scheduler = None
return train_model(
model,
dataloader,
optimizer,
loss_func=loss_func,
scheduler=scheduler,
num_epochs=num_epochs,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grads_norm=max_grads_norm,
)
class FFN(nn.Module):
def __init__(self, input_dim):
super(FFN, self).__init__()
self.gate_proj = nn.Linear(input_dim, input_dim)
self.activation = nn.SiLU()
self.map_proj = nn.Linear(input_dim, input_dim)
def forward(self, x):
return (self.activation(self.gate_proj(x)) * x) + self.map_proj(x)
def learn_ffn(
X: torch.Tensor, Y: torch.Tensor,
activation_func=nn.SiLU,
batch_size=128,
lr=0.001,
weight_decay=0.0,
loss_func="mse",
lr_schedule="linear",
num_epochs=5,
gradient_accumulation_steps=1,
max_grads_norm=1.0,
):
"""
Trains a two-layer MLP to map hidden states from X to Y.
Parameters:
X (torch.Tensor): Input tensor of shape (N, D).
Y (torch.Tensor): Target tensor of shape (N, D).
activation_func (nn.Module): Activation function for the hidden layer. Default is SiLU.
lr (float): Learning rate. Default is 0.001.
weight_decay (float): Weight decay for the optimizer. Default is 0.0.
loss_func (str): Loss function to use ('mse', 'huber', 'cosine'). Default is 'mse'.
lr_schedule (str): Learning rate schedule. Default is 'linear'.
num_epochs (int): Number of training epochs. Default is 20.
batch_size (int): Batch size for DataLoader. Default is 32.
gradient_accumulation_steps (int): Number of steps to accumulate gradients. Default is 1.
Returns:
nn.Module: Trained MLP model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_dim = X.shape[1]
model = FFN(input_dim).to(device)
# Optimizer
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
# DataLoader setup
dataset = TensorDataset(X, Y)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Learning rate scheduler
if lr_schedule == "linear":
total_steps = (len(dataloader) * num_epochs) // gradient_accumulation_steps
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda step: 1 - step / total_steps)
else:
scheduler = None
return train_model(
model,
dataloader,
optimizer,
loss_func=loss_func,
scheduler=scheduler,
num_epochs=num_epochs,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grads_norm=max_grads_norm,
)