Spaces:
Runtime error
Runtime error
File size: 6,457 Bytes
1b92e8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# --------------------------------------------------------
# beats: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
# Github source: https://github.com/microsoft/unilm/tree/master/beats
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import torch
import torch.nn as nn
from torch.nn import LayerNorm
import torchaudio.compliance.kaldi as ta_kaldi
from modules.beats.backbone import (
TransformerEncoder,
)
from modules.beats.quantizer import (
NormEMAVectorQuantizer,
)
import logging
from typing import Optional
logger = logging.getLogger(__name__)
class TokenizersConfig:
def __init__(self, cfg=None):
self.input_patch_size: int = -1 # path size of patch embedding
self.embed_dim: int = 512 # patch embedding dimension
self.conv_bias: bool = False # include bias in conv encoder
self.encoder_layers: int = 12 # num encoder layers in the transformer
self.encoder_embed_dim: int = 768 # encoder embedding dimension
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
self.encoder_attention_heads: int = 12 # num encoder attention heads
self.activation_fn: str = "gelu" # activation function to use
self.layer_norm_first: bool = False # apply layernorm first in the transformer
self.deep_norm: bool = False # apply deep_norm first in the transformer
# dropouts
self.dropout: float = 0.1 # dropout probability for the transformer
self.attention_dropout: float = 0.1 # dropout probability for attention weights
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
# positional embeddings
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
# relative position embedding
self.relative_position_embedding: bool = False # apply relative position embedding
self.num_buckets: int = 320 # number of buckets for relative position embedding
self.max_distance: int = 1280 # maximum distance for relative position embedding
self.gru_rel_pos: bool = False # apply gated relative position embedding
# quantizer
self.quant_n: int = 1024 # codebook number in quantizer
self.quant_dim: int = 256 # codebook dimension in quantizer
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
self.__dict__.update(cfg)
class Tokenizers(nn.Module):
def __init__(
self,
cfg: TokenizersConfig,
) -> None:
super().__init__()
logger.info(f"Tokenizers Config: {cfg.__dict__}")
self.cfg = cfg
self.embed = cfg.embed_dim
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.input_patch_size = cfg.input_patch_size
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
bias=cfg.conv_bias)
self.dropout_input = nn.Dropout(cfg.dropout_input)
assert not cfg.deep_norm or not cfg.layer_norm_first
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
self.quantize = NormEMAVectorQuantizer(
n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99,
)
self.quant_n = cfg.quant_n
self.quantize_layer = nn.Sequential(
nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim),
nn.Tanh(),
nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) # for quantize
)
def forward_padding_mask(
self,
features: torch.Tensor,
padding_mask: torch.Tensor,
) -> torch.Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask = padding_mask.all(-1)
return padding_mask
def preprocess(
self,
source: torch.Tensor,
fbank_mean: float = 15.41663,
fbank_std: float = 6.55582,
) -> torch.Tensor:
fbanks = []
for waveform in source:
waveform = waveform.unsqueeze(0) * 2 ** 15
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
fbanks.append(fbank)
fbank = torch.stack(fbanks, dim=0)
fbank = (fbank - fbank_mean) / (2 * fbank_std)
return fbank
def extract_labels(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
fbank_mean: float = 15.41663,
fbank_std: float = 6.55582,
):
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(fbank, padding_mask)
fbank = fbank.unsqueeze(1)
features = self.patch_embedding(fbank)
features = features.reshape(features.shape[0], features.shape[1], -1)
features = features.transpose(1, 2)
features = self.layer_norm(features)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
x = self.dropout_input(features)
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
)
quantize_input = self.quantize_layer(x)
quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input)
return embed_ind
|