Spaces:
Paused
Paused
from smolagents import Tool | |
from langchain_community.retrievers import BM25Retriever | |
from langchain.docstore.document import Document | |
import datasets | |
class GuestInfoRetrieverTool(Tool): | |
name = "guest_info_retriever" | |
description = "Retrieves detailed information about gala guests based on their name or relation." | |
inputs = { | |
"query": { | |
"type": "string", | |
"description": "The name or relation of the guest you want information about." | |
} | |
} | |
output_type = "string" | |
def __init__(self, docs): | |
self.is_initialized = False | |
self.retriever = BM25Retriever.from_documents(docs) | |
def forward(self, query: str): | |
results = self.retriever.get_relevant_documents(query) | |
if results: | |
return "\n\n".join([doc.page_content for doc in results[:3]]) | |
else: | |
return "No matching guest information found." | |
def load_guest_dataset(): | |
# Load the dataset | |
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train") | |
# Convert dataset entries into Document objects | |
docs = [ | |
Document( | |
page_content="\n".join([ | |
f"Name: {guest['name']}", | |
f"Relation: {guest['relation']}", | |
f"Description: {guest['description']}", | |
f"Email: {guest['email']}" | |
]), | |
metadata={"name": guest["name"]} | |
) | |
for guest in guest_dataset | |
] | |
# Return the tool | |
return GuestInfoRetrieverTool(docs) | |