Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load Model & Tokenizer
|
6 |
+
model_name = "AventIQ-AI/distilbert-spam-detection"
|
7 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
|
8 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
def predict_spam(text):
|
13 |
+
model.eval()
|
14 |
+
inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=128).to(device)
|
15 |
+
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
probs = torch.softmax(outputs.logits, dim=-1)
|
19 |
+
pred_class = torch.argmax(probs).item()
|
20 |
+
|
21 |
+
return "π¨ Spam" if pred_class == 1 else "β
Not Spam"
|
22 |
+
|
23 |
+
# Create Gradio Interface
|
24 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
25 |
+
gr.Markdown("# π AI-Powered Spam Detector")
|
26 |
+
gr.Markdown("Enter a message below to check if it's spam or not!")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
input_box = gr.Textbox(placeholder="Type a message here...", lines=2)
|
30 |
+
output_label = gr.Label()
|
31 |
+
|
32 |
+
button = gr.Button("π Analyze")
|
33 |
+
button.click(predict_spam, inputs=input_box, outputs=output_label)
|
34 |
+
|
35 |
+
# Launch
|
36 |
+
if __name__ == "__main__":
|
37 |
+
demo.launch()
|