Gyaneshere commited on
Commit
4cb813d
Β·
verified Β·
1 Parent(s): dc9c0cd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
3
+ import torch
4
+
5
+ # Load Model & Tokenizer
6
+ model_name = "AventIQ-AI/distilbert-spam-detection"
7
+ tokenizer = DistilBertTokenizer.from_pretrained(model_name)
8
+ model = DistilBertForSequenceClassification.from_pretrained(model_name)
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+ model.to(device)
11
+
12
+ def predict_spam(text):
13
+ model.eval()
14
+ inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=128).to(device)
15
+
16
+ with torch.no_grad():
17
+ outputs = model(**inputs)
18
+ probs = torch.softmax(outputs.logits, dim=-1)
19
+ pred_class = torch.argmax(probs).item()
20
+
21
+ return "🚨 Spam" if pred_class == 1 else "βœ… Not Spam"
22
+
23
+ # Create Gradio Interface
24
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
25
+ gr.Markdown("# πŸš€ AI-Powered Spam Detector")
26
+ gr.Markdown("Enter a message below to check if it's spam or not!")
27
+
28
+ with gr.Row():
29
+ input_box = gr.Textbox(placeholder="Type a message here...", lines=2)
30
+ output_label = gr.Label()
31
+
32
+ button = gr.Button("πŸ” Analyze")
33
+ button.click(predict_spam, inputs=input_box, outputs=output_label)
34
+
35
+ # Launch
36
+ if __name__ == "__main__":
37
+ demo.launch()