Spaces:
Build error
Build error
File size: 6,891 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from dataclasses import dataclass, field
from typing import List
from TTS.tts.configs.shared_configs import BaseTTSConfig
from TTS.tts.models.vits import VitsArgs, VitsAudioConfig
@dataclass
class VitsConfig(BaseTTSConfig):
"""Defines parameters for VITS End2End TTS model.
Args:
model (str):
Model name. Do not change unless you know what you are doing.
model_args (VitsArgs):
Model architecture arguments. Defaults to `VitsArgs()`.
audio (VitsAudioConfig):
Audio processing configuration. Defaults to `VitsAudioConfig()`.
grad_clip (List):
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
lr_gen (float):
Initial learning rate for the generator. Defaults to 0.0002.
lr_disc (float):
Initial learning rate for the discriminator. Defaults to 0.0002.
lr_scheduler_gen (str):
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_gen_params (dict):
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
lr_scheduler_disc (str):
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_disc_params (dict):
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
scheduler_after_epoch (bool):
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
optimizer (str):
Name of the optimizer to use with both the generator and the discriminator networks. One of the
`torch.optim.*`. Defaults to `AdamW`.
kl_loss_alpha (float):
Loss weight for KL loss. Defaults to 1.0.
disc_loss_alpha (float):
Loss weight for the discriminator loss. Defaults to 1.0.
gen_loss_alpha (float):
Loss weight for the generator loss. Defaults to 1.0.
feat_loss_alpha (float):
Loss weight for the feature matching loss. Defaults to 1.0.
mel_loss_alpha (float):
Loss weight for the mel loss. Defaults to 45.0.
return_wav (bool):
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
compute_linear_spec (bool):
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
use_weighted_sampler (bool):
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
weighted_sampler_attrs (dict):
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
by overweighting `root_path` by 2.0. Defaults to `{}`.
weighted_sampler_multipliers (dict):
Weight each unique value of a key returned by the formatter for weighted sampling.
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
r (int):
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
add_blank (bool):
If true, a blank token is added in between every character. Defaults to `True`.
test_sentences (List[List]):
List of sentences with speaker and language information to be used for testing.
language_ids_file (str):
Path to the language ids file.
use_language_embedding (bool):
If true, language embedding is used. Defaults to `False`.
Note:
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
Example:
>>> from TTS.tts.configs.vits_config import VitsConfig
>>> config = VitsConfig()
"""
model: str = "vits"
# model specific params
model_args: VitsArgs = field(default_factory=VitsArgs)
audio: VitsAudioConfig = field(default_factory=VitsAudioConfig)
# optimizer
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
lr_gen: float = 0.0002
lr_disc: float = 0.0002
lr_scheduler_gen: str = "ExponentialLR"
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
lr_scheduler_disc: str = "ExponentialLR"
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
scheduler_after_epoch: bool = True
optimizer: str = "AdamW"
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})
# loss params
kl_loss_alpha: float = 1.0
disc_loss_alpha: float = 1.0
gen_loss_alpha: float = 1.0
feat_loss_alpha: float = 1.0
mel_loss_alpha: float = 45.0
dur_loss_alpha: float = 1.0
speaker_encoder_loss_alpha: float = 1.0
# data loader params
return_wav: bool = True
compute_linear_spec: bool = True
# sampler params
use_weighted_sampler: bool = False # TODO: move it to the base config
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
# overrides
r: int = 1 # DO NOT CHANGE
add_blank: bool = True
# testing
test_sentences: List[List] = field(
default_factory=lambda: [
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
["Be a voice, not an echo."],
["I'm sorry Dave. I'm afraid I can't do that."],
["This cake is great. It's so delicious and moist."],
["Prior to November 22, 1963."],
]
)
# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
use_speaker_embedding: bool = False
speakers_file: str = None
speaker_embedding_channels: int = 256
language_ids_file: str = None
use_language_embedding: bool = False
# use d-vectors
use_d_vector_file: bool = False
d_vector_file: List[str] = None
d_vector_dim: int = None
def __post_init__(self):
for key, val in self.model_args.items():
if hasattr(self, key):
self[key] = val
|