Spaces:
Build error
Build error
from dataclasses import dataclass | |
from enum import Enum | |
from typing import Callable, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.utils.parametrize as parametrize | |
MAX_WAV_VALUE = 32768.0 | |
class KernelPredictor(torch.nn.Module): | |
"""Kernel predictor for the location-variable convolutions""" | |
def __init__( | |
self, | |
cond_channels, | |
conv_in_channels, | |
conv_out_channels, | |
conv_layers, | |
conv_kernel_size=3, | |
kpnet_hidden_channels=64, | |
kpnet_conv_size=3, | |
kpnet_dropout=0.0, | |
kpnet_nonlinear_activation="LeakyReLU", | |
kpnet_nonlinear_activation_params={"negative_slope": 0.1}, | |
): | |
""" | |
Args: | |
cond_channels (int): number of channel for the conditioning sequence, | |
conv_in_channels (int): number of channel for the input sequence, | |
conv_out_channels (int): number of channel for the output sequence, | |
conv_layers (int): number of layers | |
""" | |
super().__init__() | |
self.conv_in_channels = conv_in_channels | |
self.conv_out_channels = conv_out_channels | |
self.conv_kernel_size = conv_kernel_size | |
self.conv_layers = conv_layers | |
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w | |
kpnet_bias_channels = conv_out_channels * conv_layers # l_b | |
self.input_conv = nn.Sequential( | |
nn.utils.parametrizations.weight_norm( | |
nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True) | |
), | |
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
) | |
self.residual_convs = nn.ModuleList() | |
padding = (kpnet_conv_size - 1) // 2 | |
for _ in range(3): | |
self.residual_convs.append( | |
nn.Sequential( | |
nn.Dropout(kpnet_dropout), | |
nn.utils.parametrizations.weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_hidden_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
), | |
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
nn.utils.parametrizations.weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_hidden_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
), | |
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
) | |
) | |
self.kernel_conv = nn.utils.parametrizations.weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_kernel_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
) | |
self.bias_conv = nn.utils.parametrizations.weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_bias_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
) | |
def forward(self, c): | |
""" | |
Args: | |
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) | |
""" | |
batch, _, cond_length = c.shape | |
c = self.input_conv(c) | |
for residual_conv in self.residual_convs: | |
residual_conv.to(c.device) | |
c = c + residual_conv(c) | |
k = self.kernel_conv(c) | |
b = self.bias_conv(c) | |
kernels = k.contiguous().view( | |
batch, | |
self.conv_layers, | |
self.conv_in_channels, | |
self.conv_out_channels, | |
self.conv_kernel_size, | |
cond_length, | |
) | |
bias = b.contiguous().view( | |
batch, | |
self.conv_layers, | |
self.conv_out_channels, | |
cond_length, | |
) | |
return kernels, bias | |
def remove_weight_norm(self): | |
parametrize.remove_parametrizations(self.input_conv[0], "weight") | |
parametrize.remove_parametrizations(self.kernel_conv, "weight") | |
parametrize.remove_parametrizations(self.bias_conv) | |
for block in self.residual_convs: | |
parametrize.remove_parametrizations(block[1], "weight") | |
parametrize.remove_parametrizations(block[3], "weight") | |
class LVCBlock(torch.nn.Module): | |
"""the location-variable convolutions""" | |
def __init__( | |
self, | |
in_channels, | |
cond_channels, | |
stride, | |
dilations=[1, 3, 9, 27], | |
lReLU_slope=0.2, | |
conv_kernel_size=3, | |
cond_hop_length=256, | |
kpnet_hidden_channels=64, | |
kpnet_conv_size=3, | |
kpnet_dropout=0.0, | |
): | |
super().__init__() | |
self.cond_hop_length = cond_hop_length | |
self.conv_layers = len(dilations) | |
self.conv_kernel_size = conv_kernel_size | |
self.kernel_predictor = KernelPredictor( | |
cond_channels=cond_channels, | |
conv_in_channels=in_channels, | |
conv_out_channels=2 * in_channels, | |
conv_layers=len(dilations), | |
conv_kernel_size=conv_kernel_size, | |
kpnet_hidden_channels=kpnet_hidden_channels, | |
kpnet_conv_size=kpnet_conv_size, | |
kpnet_dropout=kpnet_dropout, | |
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}, | |
) | |
self.convt_pre = nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
nn.utils.parametrizations.weight_norm( | |
nn.ConvTranspose1d( | |
in_channels, | |
in_channels, | |
2 * stride, | |
stride=stride, | |
padding=stride // 2 + stride % 2, | |
output_padding=stride % 2, | |
) | |
), | |
) | |
self.conv_blocks = nn.ModuleList() | |
for dilation in dilations: | |
self.conv_blocks.append( | |
nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
nn.utils.parametrizations.weight_norm( | |
nn.Conv1d( | |
in_channels, | |
in_channels, | |
conv_kernel_size, | |
padding=dilation * (conv_kernel_size - 1) // 2, | |
dilation=dilation, | |
) | |
), | |
nn.LeakyReLU(lReLU_slope), | |
) | |
) | |
def forward(self, x, c): | |
"""forward propagation of the location-variable convolutions. | |
Args: | |
x (Tensor): the input sequence (batch, in_channels, in_length) | |
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) | |
Returns: | |
Tensor: the output sequence (batch, in_channels, in_length) | |
""" | |
_, in_channels, _ = x.shape # (B, c_g, L') | |
x = self.convt_pre(x) # (B, c_g, stride * L') | |
kernels, bias = self.kernel_predictor(c) | |
for i, conv in enumerate(self.conv_blocks): | |
output = conv(x) # (B, c_g, stride * L') | |
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length) | |
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length) | |
output = self.location_variable_convolution( | |
output, k, b, hop_size=self.cond_hop_length | |
) # (B, 2 * c_g, stride * L'): LVC | |
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh( | |
output[:, in_channels:, :] | |
) # (B, c_g, stride * L'): GAU | |
return x | |
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): | |
"""perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. | |
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. | |
Args: | |
x (Tensor): the input sequence (batch, in_channels, in_length). | |
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) | |
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) | |
dilation (int): the dilation of convolution. | |
hop_size (int): the hop_size of the conditioning sequence. | |
Returns: | |
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). | |
""" | |
batch, _, in_length = x.shape | |
batch, _, out_channels, kernel_size, kernel_length = kernel.shape | |
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched" | |
padding = dilation * int((kernel_size - 1) / 2) | |
x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) | |
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) | |
if hop_size < dilation: | |
x = F.pad(x, (0, dilation), "constant", 0) | |
x = x.unfold( | |
3, dilation, dilation | |
) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) | |
x = x[:, :, :, :, :hop_size] | |
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) | |
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) | |
o = torch.einsum("bildsk,biokl->bolsd", x, kernel) | |
o = o.to(memory_format=torch.channels_last_3d) | |
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d) | |
o = o + bias | |
o = o.contiguous().view(batch, out_channels, -1) | |
return o | |
def remove_weight_norm(self): | |
self.kernel_predictor.remove_weight_norm() | |
parametrize.remove_parametrizations(self.convt_pre[1], "weight") | |
for block in self.conv_blocks: | |
parametrize.remove_parametrizations(block[1], "weight") | |
class UnivNetGenerator(nn.Module): | |
""" | |
UnivNet Generator | |
Originally from https://github.com/mindslab-ai/univnet/blob/master/model/generator.py. | |
""" | |
def __init__( | |
self, | |
noise_dim=64, | |
channel_size=32, | |
dilations=[1, 3, 9, 27], | |
strides=[8, 8, 4], | |
lReLU_slope=0.2, | |
kpnet_conv_size=3, | |
# Below are MEL configurations options that this generator requires. | |
hop_length=256, | |
n_mel_channels=100, | |
): | |
super(UnivNetGenerator, self).__init__() | |
self.mel_channel = n_mel_channels | |
self.noise_dim = noise_dim | |
self.hop_length = hop_length | |
channel_size = channel_size | |
kpnet_conv_size = kpnet_conv_size | |
self.res_stack = nn.ModuleList() | |
hop_length = 1 | |
for stride in strides: | |
hop_length = stride * hop_length | |
self.res_stack.append( | |
LVCBlock( | |
channel_size, | |
n_mel_channels, | |
stride=stride, | |
dilations=dilations, | |
lReLU_slope=lReLU_slope, | |
cond_hop_length=hop_length, | |
kpnet_conv_size=kpnet_conv_size, | |
) | |
) | |
self.conv_pre = nn.utils.parametrizations.weight_norm( | |
nn.Conv1d(noise_dim, channel_size, 7, padding=3, padding_mode="reflect") | |
) | |
self.conv_post = nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
nn.utils.parametrizations.weight_norm(nn.Conv1d(channel_size, 1, 7, padding=3, padding_mode="reflect")), | |
nn.Tanh(), | |
) | |
def forward(self, c, z): | |
""" | |
Args: | |
c (Tensor): the conditioning sequence of mel-spectrogram (batch, mel_channels, in_length) | |
z (Tensor): the noise sequence (batch, noise_dim, in_length) | |
""" | |
z = self.conv_pre(z) # (B, c_g, L) | |
for res_block in self.res_stack: | |
res_block.to(z.device) | |
z = res_block(z, c) # (B, c_g, L * s_0 * ... * s_i) | |
z = self.conv_post(z) # (B, 1, L * 256) | |
return z | |
def eval(self, inference=False): | |
super(UnivNetGenerator, self).eval() | |
# don't remove weight norm while validation in training loop | |
if inference: | |
self.remove_weight_norm() | |
def remove_weight_norm(self): | |
parametrize.remove_parametrizations(self.conv_pre, "weight") | |
for layer in self.conv_post: | |
if len(layer.state_dict()) != 0: | |
parametrize.remove_parametrizations(layer, "weight") | |
for res_block in self.res_stack: | |
res_block.remove_weight_norm() | |
def inference(self, c, z=None): | |
# pad input mel with zeros to cut artifact | |
# see https://github.com/seungwonpark/melgan/issues/8 | |
zero = torch.full((c.shape[0], self.mel_channel, 10), -11.5129).to(c.device) | |
mel = torch.cat((c, zero), dim=2) | |
if z is None: | |
z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device) | |
audio = self.forward(mel, z) | |
audio = audio[:, :, : -(self.hop_length * 10)] | |
audio = audio.clamp(min=-1, max=1) | |
return audio | |
class VocType: | |
constructor: Callable[[], nn.Module] | |
model_path: str | |
subkey: Optional[str] = None | |
def optionally_index(self, model_dict): | |
if self.subkey is not None: | |
return model_dict[self.subkey] | |
return model_dict | |
class VocConf(Enum): | |
Univnet = VocType(UnivNetGenerator, "vocoder.pth", "model_g") | |
if __name__ == "__main__": | |
model = UnivNetGenerator() | |
c = torch.randn(3, 100, 10) | |
z = torch.randn(3, 64, 10) | |
print(c.shape) | |
y = model(c, z) | |
print(y.shape) | |
assert y.shape == torch.Size([3, 1, 2560]) | |
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print(pytorch_total_params) | |