Spaces:
Build error
Build error
from dataclasses import dataclass, field | |
from typing import List | |
from TTS.tts.configs.shared_configs import BaseTTSConfig | |
class GlowTTSConfig(BaseTTSConfig): | |
"""Defines parameters for GlowTTS model. | |
Example: | |
>>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig | |
>>> config = GlowTTSConfig() | |
Args: | |
model(str): | |
Model name used for selecting the right model at initialization. Defaults to `glow_tts`. | |
encoder_type (str): | |
Type of the encoder used by the model. Look at `TTS.tts.layers.glow_tts.encoder` for more details. | |
Defaults to `rel_pos_transformers`. | |
encoder_params (dict): | |
Parameters used to define the encoder network. Look at `TTS.tts.layers.glow_tts.encoder` for more details. | |
Defaults to `{"kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 768}` | |
use_encoder_prenet (bool): | |
enable / disable the use of a prenet for the encoder. Defaults to True. | |
hidden_channels_enc (int): | |
Number of base hidden channels used by the encoder network. It defines the input and the output channel sizes, | |
and for some encoder types internal hidden channels sizes too. Defaults to 192. | |
hidden_channels_dec (int): | |
Number of base hidden channels used by the decoder WaveNet network. Defaults to 192 as in the original work. | |
hidden_channels_dp (int): | |
Number of layer channels of the duration predictor network. Defaults to 256 as in the original work. | |
mean_only (bool): | |
If true predict only the mean values by the decoder flow. Defaults to True. | |
out_channels (int): | |
Number of channels of the model output tensor. Defaults to 80. | |
num_flow_blocks_dec (int): | |
Number of decoder blocks. Defaults to 12. | |
inference_noise_scale (float): | |
Noise scale used at inference. Defaults to 0.33. | |
kernel_size_dec (int): | |
Decoder kernel size. Defaults to 5 | |
dilation_rate (int): | |
Rate to increase dilation by each layer in a decoder block. Defaults to 1. | |
num_block_layers (int): | |
Number of decoder layers in each decoder block. Defaults to 4. | |
dropout_p_dec (float): | |
Dropout rate for decoder. Defaults to 0.1. | |
num_speaker (int): | |
Number of speaker to define the size of speaker embedding layer. Defaults to 0. | |
c_in_channels (int): | |
Number of speaker embedding channels. It is set to 512 if embeddings are learned. Defaults to 0. | |
num_splits (int): | |
Number of split levels in inversible conv1x1 operation. Defaults to 4. | |
num_squeeze (int): | |
Number of squeeze levels. When squeezing channels increases and time steps reduces by the factor | |
'num_squeeze'. Defaults to 2. | |
sigmoid_scale (bool): | |
enable/disable sigmoid scaling in decoder. Defaults to False. | |
mean_only (bool): | |
If True, encoder only computes mean value and uses constant variance for each time step. Defaults to true. | |
encoder_type (str): | |
Encoder module type. Possible values are`["rel_pos_transformer", "gated_conv", "residual_conv_bn", "time_depth_separable"]` | |
Check `TTS.tts.layers.glow_tts.encoder` for more details. Defaults to `rel_pos_transformers` as in the original paper. | |
encoder_params (dict): | |
Encoder module parameters. Defaults to None. | |
d_vector_dim (int): | |
Channels of external speaker embedding vectors. Defaults to 0. | |
data_dep_init_steps (int): | |
Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses | |
Activation Normalization that pre-computes normalization stats at the beginning and use the same values | |
for the rest. Defaults to 10. | |
style_wav_for_test (str): | |
Path to the wav file used for changing the style of the speech. Defaults to None. | |
inference_noise_scale (float): | |
Variance used for sampling the random noise added to the decoder's input at inference. Defaults to 0.0. | |
length_scale (float): | |
Multiply the predicted durations with this value to change the speech speed. Defaults to 1. | |
use_speaker_embedding (bool): | |
enable / disable using speaker embeddings for multi-speaker models. If set True, the model is | |
in the multi-speaker mode. Defaults to False. | |
use_d_vector_file (bool): | |
enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. | |
d_vector_file (str): | |
Path to the file including pre-computed speaker embeddings. Defaults to None. | |
noam_schedule (bool): | |
enable / disable the use of Noam LR scheduler. Defaults to False. | |
warmup_steps (int): | |
Number of warm-up steps for the Noam scheduler. Defaults 4000. | |
lr (float): | |
Initial learning rate. Defaults to `1e-3`. | |
wd (float): | |
Weight decay coefficient. Defaults to `1e-7`. | |
min_seq_len (int): | |
Minimum input sequence length to be used at training. | |
max_seq_len (int): | |
Maximum input sequence length to be used at training. Larger values result in more VRAM usage. | |
""" | |
model: str = "glow_tts" | |
# model params | |
num_chars: int = None | |
encoder_type: str = "rel_pos_transformer" | |
encoder_params: dict = field( | |
default_factory=lambda: { | |
"kernel_size": 3, | |
"dropout_p": 0.1, | |
"num_layers": 6, | |
"num_heads": 2, | |
"hidden_channels_ffn": 768, | |
} | |
) | |
use_encoder_prenet: bool = True | |
hidden_channels_enc: int = 192 | |
hidden_channels_dec: int = 192 | |
hidden_channels_dp: int = 256 | |
dropout_p_dp: float = 0.1 | |
dropout_p_dec: float = 0.05 | |
mean_only: bool = True | |
out_channels: int = 80 | |
num_flow_blocks_dec: int = 12 | |
inference_noise_scale: float = 0.33 | |
kernel_size_dec: int = 5 | |
dilation_rate: int = 1 | |
num_block_layers: int = 4 | |
num_speakers: int = 0 | |
c_in_channels: int = 0 | |
num_splits: int = 4 | |
num_squeeze: int = 2 | |
sigmoid_scale: bool = False | |
encoder_type: str = "rel_pos_transformer" | |
encoder_params: dict = field( | |
default_factory=lambda: { | |
"kernel_size": 3, | |
"dropout_p": 0.1, | |
"num_layers": 6, | |
"num_heads": 2, | |
"hidden_channels_ffn": 768, | |
"input_length": None, | |
} | |
) | |
d_vector_dim: int = 0 | |
# training params | |
data_dep_init_steps: int = 10 | |
# inference params | |
style_wav_for_test: str = None | |
inference_noise_scale: float = 0.0 | |
length_scale: float = 1.0 | |
# multi-speaker settings | |
use_speaker_embedding: bool = False | |
speakers_file: str = None | |
use_d_vector_file: bool = False | |
d_vector_file: str = False | |
# optimizer parameters | |
optimizer: str = "RAdam" | |
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) | |
lr_scheduler: str = "NoamLR" | |
lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) | |
grad_clip: float = 5.0 | |
lr: float = 1e-3 | |
# overrides | |
min_seq_len: int = 3 | |
max_seq_len: int = 500 | |
r: int = 1 # DO NOT CHANGE - TODO: make this immutable once coqpit implements it. | |
# testing | |
test_sentences: List[str] = field( | |
default_factory=lambda: [ | |
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", | |
"Be a voice, not an echo.", | |
"I'm sorry Dave. I'm afraid I can't do that.", | |
"This cake is great. It's so delicious and moist.", | |
"Prior to November 22, 1963.", | |
] | |
) | |