Spaces:
Build error
Build error
from dataclasses import dataclass, field | |
from typing import List | |
from TTS.tts.configs.shared_configs import BaseTTSConfig | |
from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig | |
class DelightfulTTSConfig(BaseTTSConfig): | |
""" | |
Configuration class for the DelightfulTTS model. | |
Attributes: | |
model (str): Name of the model ("delightful_tts"). | |
audio (DelightfulTtsAudioConfig): Configuration for audio settings. | |
model_args (DelightfulTtsArgs): Configuration for model arguments. | |
use_attn_priors (bool): Whether to use attention priors. | |
vocoder (VocoderConfig): Configuration for the vocoder. | |
init_discriminator (bool): Whether to initialize the discriminator. | |
steps_to_start_discriminator (int): Number of steps to start the discriminator. | |
grad_clip (List[float]): Gradient clipping values. | |
lr_gen (float): Learning rate for the gan generator. | |
lr_disc (float): Learning rate for the gan discriminator. | |
lr_scheduler_gen (str): Name of the learning rate scheduler for the generator. | |
lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler for the generator. | |
lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator. | |
lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler for the discriminator. | |
scheduler_after_epoch (bool): Whether to schedule after each epoch. | |
optimizer (str): Name of the optimizer. | |
optimizer_params (dict): Parameters for the optimizer. | |
ssim_loss_alpha (float): Alpha value for the SSIM loss. | |
mel_loss_alpha (float): Alpha value for the mel loss. | |
aligner_loss_alpha (float): Alpha value for the aligner loss. | |
pitch_loss_alpha (float): Alpha value for the pitch loss. | |
energy_loss_alpha (float): Alpha value for the energy loss. | |
u_prosody_loss_alpha (float): Alpha value for the utterance prosody loss. | |
p_prosody_loss_alpha (float): Alpha value for the phoneme prosody loss. | |
dur_loss_alpha (float): Alpha value for the duration loss. | |
char_dur_loss_alpha (float): Alpha value for the character duration loss. | |
binary_align_loss_alpha (float): Alpha value for the binary alignment loss. | |
binary_loss_warmup_epochs (int): Number of warm-up epochs for the binary loss. | |
disc_loss_alpha (float): Alpha value for the discriminator loss. | |
gen_loss_alpha (float): Alpha value for the generator loss. | |
feat_loss_alpha (float): Alpha value for the feature loss. | |
vocoder_mel_loss_alpha (float): Alpha value for the vocoder mel loss. | |
multi_scale_stft_loss_alpha (float): Alpha value for the multi-scale STFT loss. | |
multi_scale_stft_loss_params (dict): Parameters for the multi-scale STFT loss. | |
return_wav (bool): Whether to return audio waveforms. | |
use_weighted_sampler (bool): Whether to use a weighted sampler. | |
weighted_sampler_attrs (dict): Attributes for the weighted sampler. | |
weighted_sampler_multipliers (dict): Multipliers for the weighted sampler. | |
r (int): Value for the `r` override. | |
compute_f0 (bool): Whether to compute F0 values. | |
f0_cache_path (str): Path to the F0 cache. | |
attn_prior_cache_path (str): Path to the attention prior cache. | |
num_speakers (int): Number of speakers. | |
use_speaker_embedding (bool): Whether to use speaker embedding. | |
speakers_file (str): Path to the speaker file. | |
speaker_embedding_channels (int): Number of channels for the speaker embedding. | |
language_ids_file (str): Path to the language IDs file. | |
""" | |
model: str = "delightful_tts" | |
# model specific params | |
audio: DelightfulTtsAudioConfig = field(default_factory=DelightfulTtsAudioConfig) | |
model_args: DelightfulTtsArgs = field(default_factory=DelightfulTtsArgs) | |
use_attn_priors: bool = True | |
# vocoder | |
vocoder: VocoderConfig = field(default_factory=VocoderConfig) | |
init_discriminator: bool = True | |
# optimizer | |
steps_to_start_discriminator: int = 200000 | |
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) | |
lr_gen: float = 0.0002 | |
lr_disc: float = 0.0002 | |
lr_scheduler_gen: str = "ExponentialLR" | |
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) | |
lr_scheduler_disc: str = "ExponentialLR" | |
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) | |
scheduler_after_epoch: bool = True | |
optimizer: str = "AdamW" | |
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) | |
# acoustic model loss params | |
ssim_loss_alpha: float = 1.0 | |
mel_loss_alpha: float = 1.0 | |
aligner_loss_alpha: float = 1.0 | |
pitch_loss_alpha: float = 1.0 | |
energy_loss_alpha: float = 1.0 | |
u_prosody_loss_alpha: float = 0.5 | |
p_prosody_loss_alpha: float = 0.5 | |
dur_loss_alpha: float = 1.0 | |
char_dur_loss_alpha: float = 0.01 | |
binary_align_loss_alpha: float = 0.1 | |
binary_loss_warmup_epochs: int = 10 | |
# vocoder loss params | |
disc_loss_alpha: float = 1.0 | |
gen_loss_alpha: float = 1.0 | |
feat_loss_alpha: float = 1.0 | |
vocoder_mel_loss_alpha: float = 10.0 | |
multi_scale_stft_loss_alpha: float = 2.5 | |
multi_scale_stft_loss_params: dict = field( | |
default_factory=lambda: { | |
"n_ffts": [1024, 2048, 512], | |
"hop_lengths": [120, 240, 50], | |
"win_lengths": [600, 1200, 240], | |
} | |
) | |
# data loader params | |
return_wav: bool = True | |
use_weighted_sampler: bool = False | |
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) | |
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) | |
# overrides | |
r: int = 1 | |
# dataset configs | |
compute_f0: bool = True | |
f0_cache_path: str = None | |
attn_prior_cache_path: str = None | |
# multi-speaker settings | |
# use speaker embedding layer | |
num_speakers: int = 0 | |
use_speaker_embedding: bool = False | |
speakers_file: str = None | |
speaker_embedding_channels: int = 256 | |
language_ids_file: str = None | |
use_language_embedding: bool = False | |
# use d-vectors | |
use_d_vector_file: bool = False | |
d_vector_file: str = None | |
d_vector_dim: int = None | |
# testing | |
test_sentences: List[List[str]] = field( | |
default_factory=lambda: [ | |
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], | |
["Be a voice, not an echo."], | |
["I'm sorry Dave. I'm afraid I can't do that."], | |
["This cake is great. It's so delicious and moist."], | |
["Prior to November 22, 1963."], | |
] | |
) | |
def __post_init__(self): | |
# Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there. | |
if self.num_speakers > 0: | |
self.model_args.num_speakers = self.num_speakers | |
# speaker embedding settings | |
if self.use_speaker_embedding: | |
self.model_args.use_speaker_embedding = True | |
if self.speakers_file: | |
self.model_args.speakers_file = self.speakers_file | |
# d-vector settings | |
if self.use_d_vector_file: | |
self.model_args.use_d_vector_file = True | |
if self.d_vector_dim is not None and self.d_vector_dim > 0: | |
self.model_args.d_vector_dim = self.d_vector_dim | |
if self.d_vector_file: | |
self.model_args.d_vector_file = self.d_vector_file | |