Spaces:
Build error
Build error
from io import BytesIO | |
from typing import Tuple | |
import librosa | |
import numpy as np | |
import scipy | |
import soundfile as sf | |
from librosa import magphase, pyin | |
# For using kwargs | |
# pylint: disable=unused-argument | |
def build_mel_basis( | |
*, | |
sample_rate: int = None, | |
fft_size: int = None, | |
num_mels: int = None, | |
mel_fmax: int = None, | |
mel_fmin: int = None, | |
**kwargs, | |
) -> np.ndarray: | |
"""Build melspectrogram basis. | |
Returns: | |
np.ndarray: melspectrogram basis. | |
""" | |
if mel_fmax is not None: | |
assert mel_fmax <= sample_rate // 2 | |
assert mel_fmax - mel_fmin > 0 | |
return librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=mel_fmin, fmax=mel_fmax) | |
def millisec_to_length( | |
*, frame_length_ms: int = None, frame_shift_ms: int = None, sample_rate: int = None, **kwargs | |
) -> Tuple[int, int]: | |
"""Compute hop and window length from milliseconds. | |
Returns: | |
Tuple[int, int]: hop length and window length for STFT. | |
""" | |
factor = frame_length_ms / frame_shift_ms | |
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" | |
win_length = int(frame_length_ms / 1000.0 * sample_rate) | |
hop_length = int(win_length / float(factor)) | |
return win_length, hop_length | |
def _log(x, base): | |
if base == 10: | |
return np.log10(x) | |
return np.log(x) | |
def _exp(x, base): | |
if base == 10: | |
return np.power(10, x) | |
return np.exp(x) | |
def amp_to_db(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray: | |
"""Convert amplitude values to decibels. | |
Args: | |
x (np.ndarray): Amplitude spectrogram. | |
gain (float): Gain factor. Defaults to 1. | |
base (int): Logarithm base. Defaults to 10. | |
Returns: | |
np.ndarray: Decibels spectrogram. | |
""" | |
assert (x < 0).sum() == 0, " [!] Input values must be non-negative." | |
return gain * _log(np.maximum(1e-8, x), base) | |
# pylint: disable=no-self-use | |
def db_to_amp(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray: | |
"""Convert decibels spectrogram to amplitude spectrogram. | |
Args: | |
x (np.ndarray): Decibels spectrogram. | |
gain (float): Gain factor. Defaults to 1. | |
base (int): Logarithm base. Defaults to 10. | |
Returns: | |
np.ndarray: Amplitude spectrogram. | |
""" | |
return _exp(x / gain, base) | |
def preemphasis(*, x: np.ndarray, coef: float = 0.97, **kwargs) -> np.ndarray: | |
"""Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values. | |
Args: | |
x (np.ndarray): Audio signal. | |
Raises: | |
RuntimeError: Preemphasis coeff is set to 0. | |
Returns: | |
np.ndarray: Decorrelated audio signal. | |
""" | |
if coef == 0: | |
raise RuntimeError(" [!] Preemphasis is set 0.0.") | |
return scipy.signal.lfilter([1, -coef], [1], x) | |
def deemphasis(*, x: np.ndarray = None, coef: float = 0.97, **kwargs) -> np.ndarray: | |
"""Reverse pre-emphasis.""" | |
if coef == 0: | |
raise RuntimeError(" [!] Preemphasis is set 0.0.") | |
return scipy.signal.lfilter([1], [1, -coef], x) | |
def spec_to_mel(*, spec: np.ndarray, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray: | |
"""Convert a full scale linear spectrogram output of a network to a melspectrogram. | |
Args: | |
spec (np.ndarray): Normalized full scale linear spectrogram. | |
Shapes: | |
- spec: :math:`[C, T]` | |
Returns: | |
np.ndarray: Normalized melspectrogram. | |
""" | |
return np.dot(mel_basis, spec) | |
def mel_to_spec(*, mel: np.ndarray = None, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray: | |
"""Convert a melspectrogram to full scale spectrogram.""" | |
assert (mel < 0).sum() == 0, " [!] Input values must be non-negative." | |
inv_mel_basis = np.linalg.pinv(mel_basis) | |
return np.maximum(1e-10, np.dot(inv_mel_basis, mel)) | |
def wav_to_spec(*, wav: np.ndarray = None, **kwargs) -> np.ndarray: | |
"""Compute a spectrogram from a waveform. | |
Args: | |
wav (np.ndarray): Waveform. Shape :math:`[T_wav,]` | |
Returns: | |
np.ndarray: Spectrogram. Shape :math:`[C, T_spec]`. :math:`T_spec == T_wav / hop_length` | |
""" | |
D = stft(y=wav, **kwargs) | |
S = np.abs(D) | |
return S.astype(np.float32) | |
def wav_to_mel(*, wav: np.ndarray = None, mel_basis=None, **kwargs) -> np.ndarray: | |
"""Compute a melspectrogram from a waveform.""" | |
D = stft(y=wav, **kwargs) | |
S = spec_to_mel(spec=np.abs(D), mel_basis=mel_basis, **kwargs) | |
return S.astype(np.float32) | |
def spec_to_wav(*, spec: np.ndarray, power: float = 1.5, **kwargs) -> np.ndarray: | |
"""Convert a spectrogram to a waveform using Griffi-Lim vocoder.""" | |
S = spec.copy() | |
return griffin_lim(spec=S**power, **kwargs) | |
def mel_to_wav(*, mel: np.ndarray = None, power: float = 1.5, **kwargs) -> np.ndarray: | |
"""Convert a melspectrogram to a waveform using Griffi-Lim vocoder.""" | |
S = mel.copy() | |
S = mel_to_spec(mel=S, mel_basis=kwargs["mel_basis"]) # Convert back to linear | |
return griffin_lim(spec=S**power, **kwargs) | |
### STFT and ISTFT ### | |
def stft( | |
*, | |
y: np.ndarray = None, | |
fft_size: int = None, | |
hop_length: int = None, | |
win_length: int = None, | |
pad_mode: str = "reflect", | |
window: str = "hann", | |
center: bool = True, | |
**kwargs, | |
) -> np.ndarray: | |
"""Librosa STFT wrapper. | |
Check http://librosa.org/doc/main/generated/librosa.stft.html argument details. | |
Returns: | |
np.ndarray: Complex number array. | |
""" | |
return librosa.stft( | |
y=y, | |
n_fft=fft_size, | |
hop_length=hop_length, | |
win_length=win_length, | |
pad_mode=pad_mode, | |
window=window, | |
center=center, | |
) | |
def istft( | |
*, | |
y: np.ndarray = None, | |
hop_length: int = None, | |
win_length: int = None, | |
window: str = "hann", | |
center: bool = True, | |
**kwargs, | |
) -> np.ndarray: | |
"""Librosa iSTFT wrapper. | |
Check http://librosa.org/doc/main/generated/librosa.istft.html argument details. | |
Returns: | |
np.ndarray: Complex number array. | |
""" | |
return librosa.istft(y, hop_length=hop_length, win_length=win_length, center=center, window=window) | |
def griffin_lim(*, spec: np.ndarray = None, num_iter=60, **kwargs) -> np.ndarray: | |
angles = np.exp(2j * np.pi * np.random.rand(*spec.shape)) | |
S_complex = np.abs(spec).astype(complex) | |
y = istft(y=S_complex * angles, **kwargs) | |
if not np.isfinite(y).all(): | |
print(" [!] Waveform is not finite everywhere. Skipping the GL.") | |
return np.array([0.0]) | |
for _ in range(num_iter): | |
angles = np.exp(1j * np.angle(stft(y=y, **kwargs))) | |
y = istft(y=S_complex * angles, **kwargs) | |
return y | |
def compute_stft_paddings( | |
*, x: np.ndarray = None, hop_length: int = None, pad_two_sides: bool = False, **kwargs | |
) -> Tuple[int, int]: | |
"""Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding | |
(first and final frames)""" | |
pad = (x.shape[0] // hop_length + 1) * hop_length - x.shape[0] | |
if not pad_two_sides: | |
return 0, pad | |
return pad // 2, pad // 2 + pad % 2 | |
def compute_f0( | |
*, | |
x: np.ndarray = None, | |
pitch_fmax: float = None, | |
pitch_fmin: float = None, | |
hop_length: int = None, | |
win_length: int = None, | |
sample_rate: int = None, | |
stft_pad_mode: str = "reflect", | |
center: bool = True, | |
**kwargs, | |
) -> np.ndarray: | |
"""Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram. | |
Args: | |
x (np.ndarray): Waveform. Shape :math:`[T_wav,]` | |
pitch_fmax (float): Pitch max value. | |
pitch_fmin (float): Pitch min value. | |
hop_length (int): Number of frames between STFT columns. | |
win_length (int): STFT window length. | |
sample_rate (int): Audio sampling rate. | |
stft_pad_mode (str): Padding mode for STFT. | |
center (bool): Centered padding. | |
Returns: | |
np.ndarray: Pitch. Shape :math:`[T_pitch,]`. :math:`T_pitch == T_wav / hop_length` | |
Examples: | |
>>> WAV_FILE = filename = librosa.example('vibeace') | |
>>> from TTS.config import BaseAudioConfig | |
>>> from TTS.utils.audio import AudioProcessor | |
>>> conf = BaseAudioConfig(pitch_fmax=640, pitch_fmin=1) | |
>>> ap = AudioProcessor(**conf) | |
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] | |
>>> pitch = ap.compute_f0(wav) | |
""" | |
assert pitch_fmax is not None, " [!] Set `pitch_fmax` before caling `compute_f0`." | |
assert pitch_fmin is not None, " [!] Set `pitch_fmin` before caling `compute_f0`." | |
f0, voiced_mask, _ = pyin( | |
y=x.astype(np.double), | |
fmin=pitch_fmin, | |
fmax=pitch_fmax, | |
sr=sample_rate, | |
frame_length=win_length, | |
win_length=win_length // 2, | |
hop_length=hop_length, | |
pad_mode=stft_pad_mode, | |
center=center, | |
n_thresholds=100, | |
beta_parameters=(2, 18), | |
boltzmann_parameter=2, | |
resolution=0.1, | |
max_transition_rate=35.92, | |
switch_prob=0.01, | |
no_trough_prob=0.01, | |
) | |
f0[~voiced_mask] = 0.0 | |
return f0 | |
def compute_energy(y: np.ndarray, **kwargs) -> np.ndarray: | |
"""Compute energy of a waveform using the same parameters used for computing melspectrogram. | |
Args: | |
x (np.ndarray): Waveform. Shape :math:`[T_wav,]` | |
Returns: | |
np.ndarray: energy. Shape :math:`[T_energy,]`. :math:`T_energy == T_wav / hop_length` | |
Examples: | |
>>> WAV_FILE = filename = librosa.example('vibeace') | |
>>> from TTS.config import BaseAudioConfig | |
>>> from TTS.utils.audio import AudioProcessor | |
>>> conf = BaseAudioConfig() | |
>>> ap = AudioProcessor(**conf) | |
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] | |
>>> energy = ap.compute_energy(wav) | |
""" | |
x = stft(y=y, **kwargs) | |
mag, _ = magphase(x) | |
energy = np.sqrt(np.sum(mag**2, axis=0)) | |
return energy | |
### Audio Processing ### | |
def find_endpoint( | |
*, | |
wav: np.ndarray = None, | |
trim_db: float = -40, | |
sample_rate: int = None, | |
min_silence_sec=0.8, | |
gain: float = None, | |
base: int = None, | |
**kwargs, | |
) -> int: | |
"""Find the last point without silence at the end of a audio signal. | |
Args: | |
wav (np.ndarray): Audio signal. | |
threshold_db (int, optional): Silence threshold in decibels. Defaults to -40. | |
min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8. | |
gian (float, optional): Gain to be used to convert trim_db to trim_amp. Defaults to None. | |
base (int, optional): Base of the logarithm used to convert trim_db to trim_amp. Defaults to 10. | |
Returns: | |
int: Last point without silence. | |
""" | |
window_length = int(sample_rate * min_silence_sec) | |
hop_length = int(window_length / 4) | |
threshold = db_to_amp(x=-trim_db, gain=gain, base=base) | |
for x in range(hop_length, len(wav) - window_length, hop_length): | |
if np.max(wav[x : x + window_length]) < threshold: | |
return x + hop_length | |
return len(wav) | |
def trim_silence( | |
*, | |
wav: np.ndarray = None, | |
sample_rate: int = None, | |
trim_db: float = None, | |
win_length: int = None, | |
hop_length: int = None, | |
**kwargs, | |
) -> np.ndarray: | |
"""Trim silent parts with a threshold and 0.01 sec margin""" | |
margin = int(sample_rate * 0.01) | |
wav = wav[margin:-margin] | |
return librosa.effects.trim(wav, top_db=trim_db, frame_length=win_length, hop_length=hop_length)[0] | |
def volume_norm(*, x: np.ndarray = None, coef: float = 0.95, **kwargs) -> np.ndarray: | |
"""Normalize the volume of an audio signal. | |
Args: | |
x (np.ndarray): Raw waveform. | |
coef (float): Coefficient to rescale the maximum value. Defaults to 0.95. | |
Returns: | |
np.ndarray: Volume normalized waveform. | |
""" | |
return x / abs(x).max() * coef | |
def rms_norm(*, wav: np.ndarray = None, db_level: float = -27.0, **kwargs) -> np.ndarray: | |
r = 10 ** (db_level / 20) | |
a = np.sqrt((len(wav) * (r**2)) / np.sum(wav**2)) | |
return wav * a | |
def rms_volume_norm(*, x: np.ndarray, db_level: float = -27.0, **kwargs) -> np.ndarray: | |
"""Normalize the volume based on RMS of the signal. | |
Args: | |
x (np.ndarray): Raw waveform. | |
db_level (float): Target dB level in RMS. Defaults to -27.0. | |
Returns: | |
np.ndarray: RMS normalized waveform. | |
""" | |
assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0" | |
wav = rms_norm(wav=x, db_level=db_level) | |
return wav | |
def load_wav(*, filename: str, sample_rate: int = None, resample: bool = False, **kwargs) -> np.ndarray: | |
"""Read a wav file using Librosa and optionally resample, silence trim, volume normalize. | |
Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before. | |
Args: | |
filename (str): Path to the wav file. | |
sr (int, optional): Sampling rate for resampling. Defaults to None. | |
resample (bool, optional): Resample the audio file when loading. Slows down the I/O time. Defaults to False. | |
Returns: | |
np.ndarray: Loaded waveform. | |
""" | |
if resample: | |
# loading with resampling. It is significantly slower. | |
x, _ = librosa.load(filename, sr=sample_rate) | |
else: | |
# SF is faster than librosa for loading files | |
x, _ = sf.read(filename) | |
return x | |
def save_wav(*, wav: np.ndarray, path: str, sample_rate: int = None, pipe_out=None, **kwargs) -> None: | |
"""Save float waveform to a file using Scipy. | |
Args: | |
wav (np.ndarray): Waveform with float values in range [-1, 1] to save. | |
path (str): Path to a output file. | |
sr (int, optional): Sampling rate used for saving to the file. Defaults to None. | |
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe. | |
""" | |
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) | |
wav_norm = wav_norm.astype(np.int16) | |
if pipe_out: | |
wav_buffer = BytesIO() | |
scipy.io.wavfile.write(wav_buffer, sample_rate, wav_norm) | |
wav_buffer.seek(0) | |
pipe_out.buffer.write(wav_buffer.read()) | |
scipy.io.wavfile.write(path, sample_rate, wav_norm) | |
def mulaw_encode(*, wav: np.ndarray, mulaw_qc: int, **kwargs) -> np.ndarray: | |
mu = 2**mulaw_qc - 1 | |
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu) | |
signal = (signal + 1) / 2 * mu + 0.5 | |
return np.floor( | |
signal, | |
) | |
def mulaw_decode(*, wav, mulaw_qc: int, **kwargs) -> np.ndarray: | |
"""Recovers waveform from quantized values.""" | |
mu = 2**mulaw_qc - 1 | |
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) | |
return x | |
def encode_16bits(*, x: np.ndarray, **kwargs) -> np.ndarray: | |
return np.clip(x * 2**15, -(2**15), 2**15 - 1).astype(np.int16) | |
def quantize(*, x: np.ndarray, quantize_bits: int, **kwargs) -> np.ndarray: | |
"""Quantize a waveform to a given number of bits. | |
Args: | |
x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`. | |
quantize_bits (int): Number of quantization bits. | |
Returns: | |
np.ndarray: Quantized waveform. | |
""" | |
return (x + 1.0) * (2**quantize_bits - 1) / 2 | |
def dequantize(*, x, quantize_bits, **kwargs) -> np.ndarray: | |
"""Dequantize a waveform from the given number of bits.""" | |
return 2 * x / (2**quantize_bits - 1) - 1 | |