File size: 21,604 Bytes
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import os
import time
import numpy as np
os.environ['PYOPENGL_PLATFORM'] = 'egl'  # or 'osmesa'
import pyrender
import trimesh
import queue
import imageio
import threading
import multiprocessing
import glob
import subprocess
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

args = {
    'render_video_fps': 30,
    'render_video_width': 480,
    'render_video_height': 720,
    'render_concurrent_num': max(1, multiprocessing.cpu_count() - 1)  ,
    'render_tmp_img_filetype': 'bmp',
    'debug': False
}

def deg_to_rad(degrees):
    return degrees * np.pi / 180

def create_pose_camera(angle_deg):
    angle_rad = deg_to_rad(angle_deg)
    return np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, np.cos(angle_rad), -np.sin(angle_rad), 1.0],
        [0.0, np.sin(angle_rad), np.cos(angle_rad), 5.0],
        [0.0, 0.0, 0.0, 1.0]
    ])

def create_pose_light(angle_deg):
    angle_rad = deg_to_rad(angle_deg)
    return np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, np.cos(angle_rad), -np.sin(angle_rad), 0.0],
        [0.0, np.sin(angle_rad), np.cos(angle_rad), 3.0],
        [0.0, 0.0, 0.0, 1.0]
    ])

def create_scene_with_mesh(vertices, faces, uniform_color, pose_camera, pose_light):
    trimesh_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=uniform_color)
    mesh = pyrender.Mesh.from_trimesh(trimesh_mesh, smooth=True)
    scene = pyrender.Scene(bg_color=[0, 0, 0, 0])
    scene.add(mesh)
    camera = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0)
    scene.add(camera, pose=pose_camera)
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=4.0)
    scene.add(light, pose=pose_light)
    return scene

def do_render_one_frame(renderer, frame_idx, vertices, vertices1, faces):
    if frame_idx % 100 == 0:
        print('processed', frame_idx, 'frames')
    uniform_color = [220, 220, 220, 255]
    pose_camera = create_pose_camera(angle_deg=-2)
    pose_light = create_pose_light(angle_deg=-30)
    figs = []
    for vtx in [vertices, vertices1]:
        scene = create_scene_with_mesh(vtx, faces, uniform_color, pose_camera, pose_light)
        fig, _ = renderer.render(scene)
        figs.append(fig)
    return figs[0], figs[1]

def do_render_one_frame_no_gt(renderer, frame_idx, vertices, faces):
    if frame_idx % 100 == 0:
        print('processed', frame_idx, 'frames')
    uniform_color = [220, 220, 220, 255]
    pose_camera = create_pose_camera(angle_deg=-2)
    pose_light = create_pose_light(angle_deg=-30)
    scene = create_scene_with_mesh(vertices, faces, uniform_color, pose_camera, pose_light)
    fig, _ = renderer.render(scene)
    return fig

def write_images_from_queue(fig_queue, output_dir, img_filetype):
    while True:
        e = fig_queue.get()
        if e is None:
            break
        fid, fig1, fig2 = e
        fn = os.path.join(output_dir, f"frame_{fid}.{img_filetype}")
        merged_fig = np.hstack((fig1, fig2))
        try:
            imageio.imwrite(fn, merged_fig)
        except Exception as ex:
            print(f"Error writing image {fn}: {ex}")
            raise ex

def write_images_from_queue_no_gt(fig_queue, output_dir, img_filetype):
    while True:
        e = fig_queue.get()
        if e is None:
            break
        fid, fig1 = e
        fn = os.path.join(output_dir, f"frame_{fid}.{img_filetype}")
        try:
            imageio.imwrite(fn, fig1)
        except Exception as ex:
            print(f"Error writing image {fn}: {ex}")
            raise ex

def render_frames_and_enqueue(fids, frame_vertex_pairs, faces, render_width, render_height, fig_queue):
    fig_resolution = (render_width, render_height)
    renderer = pyrender.OffscreenRenderer(*fig_resolution)
    for idx, fid in enumerate(fids):
        fig1, fig2 = do_render_one_frame(renderer, fid, frame_vertex_pairs[idx][0], frame_vertex_pairs[idx][1], faces)
        fig_queue.put((fid, fig1, fig2))
    renderer.delete()

def render_frames_and_enqueue_no_gt(fids, frame_vertex_pairs, faces, render_width, render_height, fig_queue):
    fig_resolution = (render_width, render_height)
    renderer = pyrender.OffscreenRenderer(*fig_resolution)
    for idx, fid in enumerate(fids):
        fig1 = do_render_one_frame_no_gt(renderer, fid, frame_vertex_pairs[idx][0], faces)
        fig_queue.put((fid, fig1))
    renderer.delete()

def sub_process_process_frame(subprocess_index, render_video_width, render_video_height, render_tmp_img_filetype, fids, frame_vertex_pairs, faces, output_dir):
    t0 = time.time()
    print(f"subprocess_index={subprocess_index} begin_ts={t0}")
    fig_queue = queue.Queue()
    render_frames_and_enqueue(fids, frame_vertex_pairs, faces, render_video_width, render_video_height, fig_queue)
    fig_queue.put(None)
    t1 = time.time()
    thr = threading.Thread(target=write_images_from_queue, args=(fig_queue, output_dir, render_tmp_img_filetype))
    thr.start()
    thr.join()
    t2 = time.time()
    print(f"subprocess_index={subprocess_index} render={t1 - t0:.2f} all={t2 - t0:.2f}")

def sub_process_process_frame_no_gt(subprocess_index, render_video_width, render_video_height, render_tmp_img_filetype, fids, frame_vertex_pairs, faces, output_dir):
    t0 = time.time()
    print(f"subprocess_index={subprocess_index} begin_ts={t0}")
    fig_queue = queue.Queue()
    render_frames_and_enqueue_no_gt(fids, frame_vertex_pairs, faces, render_video_width, render_video_height, fig_queue)
    fig_queue.put(None)
    t1 = time.time()
    thr = threading.Thread(target=write_images_from_queue_no_gt, args=(fig_queue, output_dir, render_tmp_img_filetype))
    thr.start()
    thr.join()
    t2 = time.time()
    print(f"subprocess_index={subprocess_index} render={t1 - t0:.2f} all={t2 - t0:.2f}")

def distribute_frames(frames, vertices_all, vertices1_all):
    sample_interval = max(1, int(30 // args['render_video_fps']))
    subproc_frame_ids = [[] for _ in range(args['render_concurrent_num'])]
    subproc_vertices = [[] for _ in range(args['render_concurrent_num'])]
    sid = 0
    for i in range(frames):
        if i % sample_interval != 0:
            continue
        idx = sid % args['render_concurrent_num']
        subproc_frame_ids[idx].append(sid)
        subproc_vertices[idx].append((vertices_all[i], vertices1_all[i]))
        sid += 1
    return subproc_frame_ids, subproc_vertices

def distribute_frames_no_gt(frames, vertices_all):
    sample_interval = max(1, int(30 // args['render_video_fps']))
    subproc_frame_ids = [[] for _ in range(args['render_concurrent_num'])]
    subproc_vertices = [[] for _ in range(args['render_concurrent_num'])]
    sid = 0
    for i in range(frames):
        if i % sample_interval != 0:
            continue
        idx = sid % args['render_concurrent_num']
        subproc_frame_ids[idx].append(sid)
        subproc_vertices[idx].append((vertices_all[i], vertices_all[i]))
        sid += 1
    return subproc_frame_ids, subproc_vertices

def generate_silent_videos(frames, vertices_all, vertices1_all, faces, output_dir):
    ids, verts = distribute_frames(frames, vertices_all, vertices1_all)
    with multiprocessing.Pool(args['render_concurrent_num']) as pool:
        pool.starmap(sub_process_process_frame, [
            (
                i, 
                args['render_video_width'],
                args['render_video_height'],
                args['render_tmp_img_filetype'],
                ids[i],
                verts[i],
                faces,
                output_dir
            )
            for i in range(args['render_concurrent_num'])
        ])
    out_file = os.path.join(output_dir, "silence_video.mp4")
    convert_img_to_mp4(os.path.join(output_dir, f"frame_%d.{args['render_tmp_img_filetype']}"), out_file, args['render_video_fps'])
    for fn in glob.glob(os.path.join(output_dir, f"*.{args['render_tmp_img_filetype']}")):
        os.remove(fn)
    return out_file

def generate_silent_videos_no_gt(frames, vertices_all, faces, output_dir):
    ids, verts = distribute_frames_no_gt(frames, vertices_all)
    with multiprocessing.Pool(args['render_concurrent_num']) as pool:
        pool.starmap(sub_process_process_frame_no_gt, [
            (
                i, 
                args['render_video_width'],
                args['render_video_height'],
                args['render_tmp_img_filetype'],
                ids[i],
                verts[i],
                faces,
                output_dir
            )
            for i in range(args['render_concurrent_num'])
        ])
    out_file = os.path.join(output_dir, "silence_video.mp4")
    convert_img_to_mp4(os.path.join(output_dir, f"frame_%d.{args['render_tmp_img_filetype']}"), out_file, args['render_video_fps'])
    for fn in glob.glob(os.path.join(output_dir, f"*.{args['render_tmp_img_filetype']}")):
        os.remove(fn)
    return out_file

def add_audio_to_video(silent_video_path, audio_path, output_video_path):
    cmd = [
        'ffmpeg','-y','-i', silent_video_path,'-i', audio_path,'-map','0:v','-map','1:a','-c:v','copy','-shortest',output_video_path
    ]
    try:
        subprocess.run(cmd, check=True)
        print(f"Video with audio generated: {output_video_path}")
    except subprocess.CalledProcessError as e:
        print(f"Error: {e}")

def convert_img_to_mp4(input_pattern, output_file, framerate=30):
    cmd = ['ffmpeg','-framerate', str(framerate),'-i', input_pattern,'-c:v','libx264','-pix_fmt','yuv420p',output_file,'-y']
    try:
        subprocess.run(cmd, check=True)
        print(f"Video conversion: {output_file}")
    except subprocess.CalledProcessError as e:
        print(f"Error: {e}")

def process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames):
    uniform_color = [220, 220, 220, 255]
    reso = (1000, 1000)
    fig, axs = plt.subplots(1, 2, figsize=(20,10))
    axs = axs.flatten()
    vertices = vertices_all[i]
    vertices1 = vertices1_all[i]
    fn = f"{output_dir}frame_{i}.png"
    if i % 100 == 0:
        print('processed', i, 'frames')
    angle_rad = deg_to_rad(-2)
    pose_camera = np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, np.cos(angle_rad), -np.sin(angle_rad), 1.0],
        [0.0, np.sin(angle_rad), np.cos(angle_rad), 5.0],
        [0.0, 0.0, 0.0, 1.0]
    ])
    angle_rad = deg_to_rad(-30)
    pose_light = np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, np.cos(angle_rad), -np.sin(angle_rad), 0.0],
        [0.0, np.sin(angle_rad), np.cos(angle_rad), 3.0],
        [0.0, 0.0, 0.0, 1.0]
    ])
    for idx, vtx in enumerate([vertices, vertices1]):
        tm = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=uniform_color)
        mesh = pyrender.Mesh.from_trimesh(tm, smooth=True)
        scene = pyrender.Scene()
        scene.add(mesh)
        cam = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0)
        scene.add(cam, pose=pose_camera)
        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=4.0)
        scene.add(light, pose=pose_light)
        r = pyrender.OffscreenRenderer(*reso)
        color, _ = r.render(scene)
        axs[idx].imshow(color)
        axs[idx].axis('off')
        r.delete()
    plt.savefig(fn, bbox_inches='tight')
    plt.close(fig)

def generate_images(frames, vertices_all, vertices1_all, faces, output_dir, filenames):
    nc = multiprocessing.cpu_count() - 1
    for i in range(frames):
        process_frame(i*3, vertices_all, vertices1_all, faces, output_dir, filenames)

def render_one_sequence_with_face(res_npz_path, output_dir, audio_path, model_folder="/data/datasets/smplx_models/", model_type='smplx', gender='NEUTRAL_2020', ext='npz', num_betas=300, num_expression_coeffs=100, use_face_contour=False, use_matplotlib=False, remove_transl=True):
    import smplx
    import torch
    data_np_body = np.load(res_npz_path, allow_pickle=True)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
    n = data_np_body["poses"].shape[0]
    model = smplx.create(model_folder, model_type=model_type, gender=gender, use_face_contour=use_face_contour, num_betas=num_betas, num_expression_coeffs=num_expression_coeffs, ext=ext, use_pca=False).cuda()
    beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
    beta = beta.repeat(n, 1)
    expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
    jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
    pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
    transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
    if remove_transl: 
        transl = transl[0:1].repeat(n, 1)
    output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], leye_pose=pose[:,69:72], reye_pose=pose[:,72:75], return_verts=True)
    vertices_all = output["vertices"].cpu().numpy()

    pose1 = torch.zeros_like(pose).to(torch.float32).cuda()
    output1 = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3], leye_pose=pose1[:,69:72], reye_pose=pose1[:,72:75], return_verts=True)
    v1 = output1["vertices"].cpu().numpy()*7
    td = np.zeros_like(v1)
    td[:, :, 1] = 10
    vertices1_all = v1 - td
    if args['debug']:
        seconds = 1
    else:
        seconds = vertices_all.shape[0]//30
    sfile = generate_silent_videos(int(seconds*args['render_video_fps']), vertices1_all, vertices_all, faces, output_dir)
    base = os.path.splitext(os.path.basename(res_npz_path))[0]
    final_clip = os.path.join(output_dir, f"{base}.mp4")
    add_audio_to_video(sfile, audio_path, final_clip)
    os.remove(sfile)
    return final_clip

def render_one_sequence(res_npz_path, gt_npz_path, output_dir, audio_path, model_folder="/data/datasets/smplx_models/", model_type='smplx', gender='NEUTRAL_2020', ext='npz', num_betas=300, num_expression_coeffs=100, use_face_contour=False, use_matplotlib=False, remove_transl=True):
    import smplx
    import torch
    data_np_body = np.load(res_npz_path, allow_pickle=True)
    gt_np_body = np.load(gt_npz_path, allow_pickle=True)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
    n = data_np_body["poses"].shape[0]
    model = smplx.create(model_folder, model_type=model_type, gender=gender, use_face_contour=use_face_contour, num_betas=num_betas, num_expression_coeffs=num_expression_coeffs, ext=ext, use_pca=False).cuda()
    beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
    beta = beta.repeat(n, 1)
    expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
    jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
    pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
    transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
    if remove_transl: 
        transl = transl[0:1].repeat(n, 1)
    output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], leye_pose=pose[:,69:72], reye_pose=pose[:,72:75], return_verts=True)
    vertices_all = output["vertices"].cpu().numpy()
    beta1 = torch.from_numpy(gt_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
    expression1 = torch.from_numpy(gt_np_body["expressions"][:n]).to(torch.float32).cuda()
    jaw_pose1 = torch.from_numpy(gt_np_body["poses"][:n,66:69]).to(torch.float32).cuda()
    pose1 = torch.from_numpy(gt_np_body["poses"][:n]).to(torch.float32).cuda()
    transl1 = torch.from_numpy(gt_np_body["trans"][:n]).to(torch.float32).cuda()
    if remove_transl: 
        transl1 = transl1[0:1].repeat(n, 1)
    output1 = model(betas=beta1, transl=transl1, expression=expression1, jaw_pose=jaw_pose1, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3], leye_pose=pose1[:,69:72], reye_pose=pose1[:,72:75], return_verts=True)
    vertices1_all = output1["vertices"].cpu().numpy()
    if args['debug']:
        seconds = 1
    else:
        seconds = vertices_all.shape[0]//30
    sfile = generate_silent_videos(int(seconds*args['render_video_fps']), vertices_all, vertices1_all, faces, output_dir)
    base = os.path.splitext(os.path.basename(res_npz_path))[0]
    final_clip = os.path.join(output_dir, f"{base}.mp4")
    add_audio_to_video(sfile, audio_path, final_clip)
    os.remove(sfile)
    return final_clip

def render_one_sequence_no_gt(res_npz_path, output_dir, audio_path, model_folder="/data/datasets/smplx_models/", model_type='smplx', gender='NEUTRAL_2020', ext='npz', num_betas=300, num_expression_coeffs=100, use_face_contour=False, use_matplotlib=False, remove_transl=True):
    import smplx
    import torch
    data_np_body = np.load(res_npz_path, allow_pickle=True)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
    n = data_np_body["poses"].shape[0]
    model = smplx.create(model_folder, model_type=model_type, gender=gender, use_face_contour=use_face_contour, num_betas=num_betas, num_expression_coeffs=num_expression_coeffs, ext=ext, use_pca=False).cuda()
    beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
    beta = beta.repeat(n, 1)
    expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
    jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
    pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
    transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
    if remove_transl: 
        transl = transl[0:1].repeat(n, 1)
    output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], leye_pose=pose[:,69:72], reye_pose=pose[:,72:75], return_verts=True)
    vertices_all = output["vertices"].cpu().numpy()
    if args['debug']:
        seconds = 1
    else:
        seconds = vertices_all.shape[0]//30
    sfile = generate_silent_videos_no_gt(int(seconds*args['render_video_fps']), vertices_all, faces, output_dir)
    base = os.path.splitext(os.path.basename(res_npz_path))[0]
    final_clip = os.path.join(output_dir, f"{base}.mp4")
    add_audio_to_video(sfile, audio_path, final_clip)
    os.remove(sfile)
    return final_clip

def render_one_sequence_face_only(res_npz_path, output_dir, audio_path, model_folder="/data/datasets/smplx_models/", model_type='smplx', gender='NEUTRAL_2020', ext='npz', num_betas=300, num_expression_coeffs=100, use_face_contour=False, use_matplotlib=False, remove_transl=True):
    import smplx
    import torch
    data_np_body = np.load(res_npz_path, allow_pickle=True)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
    n = data_np_body["poses"].shape[0]
    model = smplx.create(model_folder, model_type=model_type, gender=gender, use_face_contour=use_face_contour, num_betas=num_betas, num_expression_coeffs=num_expression_coeffs, ext=ext, use_pca=False).cuda()
    beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
    beta = beta.repeat(n, 1)
    expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
    jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
    pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
    transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
    if remove_transl: 
        transl = transl[0:1].repeat(n, 1)
    output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], leye_pose=pose[:,69:72], reye_pose=pose[:,72:75], return_verts=True)
    vertices_all = output["vertices"].cpu().numpy()

    pose1 = torch.zeros_like(pose).to(torch.float32).cuda()
    output1 = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3], leye_pose=pose1[:,69:72], reye_pose=pose1[:,72:75], return_verts=True)
    v1 = output1["vertices"].cpu().numpy()*7
    td = np.zeros_like(v1)
    td[:, :, 1] = 10
    vertices_all = v1 - td

    if args['debug']:
        seconds = 1
    else:
        seconds = vertices_all.shape[0]//30
    sfile = generate_silent_videos_no_gt(int(seconds*args['render_video_fps']), vertices_all, faces, output_dir)
    base = os.path.splitext(os.path.basename(res_npz_path))[0]
    final_clip = os.path.join(output_dir, f"{base}_face.mp4")
    add_audio_to_video(sfile, audio_path, final_clip)
    os.remove(sfile)
    return final_clip