Spaces:
Sleeping
Sleeping
File size: 13,153 Bytes
b03a8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def _copysign(a, b):
signs_differ = (a < 0) != (b < 0)
return torch.where(signs_differ, -a, a)
def _sqrt_positive_part(x):
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix):
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError
m00 = matrix[..., 0, 0]
m11 = matrix[..., 1, 1]
m22 = matrix[..., 2, 2]
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
return torch.stack((o0, o1, o2, o3), -1)
def quaternion_to_axis_angle(quaternions):
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
half_angles = torch.atan2(norms, quaternions[..., :1])
angles = 2 * half_angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles]*angles[small_angles])/48
)
return quaternions[..., 1:] / sin_half_angles_over_angles
def matrix_to_axis_angle(matrix):
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def rotation_6d_to_axis_angle(rot6d):
return matrix_to_axis_angle(rotation_6d_to_matrix(rot6d))
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
def axis_angle_to_quaternion(axis_angle):
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = 0.5 * angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def quaternion_to_matrix(quaternions):
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_to_matrix(axis_angle):
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def axis_angle_to_rotation_6d(axis_angle):
return matrix_to_rotation_6d(axis_angle_to_matrix(axis_angle))
def velocity2position(data_seq, dt, init_pos):
res_trans = []
for i in range(data_seq.shape[1]):
if i == 0:
res_trans.append(init_pos.unsqueeze(1))
else:
res = data_seq[:, i-1:i] * dt + res_trans[-1]
res_trans.append(res)
return torch.cat(res_trans, dim=1)
def recover_from_mask_ts(selected_motion: torch.Tensor, mask: list) -> torch.Tensor:
device = selected_motion.device
dtype = selected_motion.dtype
mask_arr = torch.tensor(mask, dtype=torch.bool, device=device)
j = len(mask_arr)
sum_mask = mask_arr.sum().item()
c_channels = selected_motion.shape[-1] // sum_mask
new_shape = selected_motion.shape[:-1] + (sum_mask, c_channels)
selected_motion = selected_motion.reshape(new_shape)
out_shape = list(selected_motion.shape[:-2]) + [j, c_channels]
recovered = torch.zeros(out_shape, dtype=dtype, device=device)
recovered[..., mask_arr, :] = selected_motion
final_shape = list(recovered.shape[:-2]) + [j*c_channels]
recovered = recovered.reshape(final_shape)
return recovered
class Quantizer(nn.Module):
def __init__(self, n_e, e_dim, beta):
super().__init__()
self.e_dim = e_dim
self.n_e = n_e
self.beta = beta
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0/self.n_e, 1.0/self.n_e)
def forward(self, z):
assert z.shape[-1] == self.e_dim
z_flattened = z.contiguous().view(-1, self.e_dim)
d = torch.sum(z_flattened**2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2*torch.matmul(z_flattened, self.embedding.weight.t())
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
loss = torch.mean((z_q - z.detach())**2) + self.beta*torch.mean((z_q.detach() - z)**2)
z_q = z + (z_q - z).detach()
min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean+1e-10)))
return loss, z_q, min_encoding_indices, perplexity
def map2index(self, z):
assert z.shape[-1] == self.e_dim
z_flattened = z.contiguous().view(-1, self.e_dim)
d = torch.sum(z_flattened**2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2*torch.matmul(z_flattened, self.embedding.weight.t())
min_encoding_indices = torch.argmin(d, dim=1)
return min_encoding_indices.reshape(z.shape[0], -1)
def get_codebook_entry(self, indices):
index_flattened = indices.view(-1)
z_q = self.embedding(index_flattened)
z_q = z_q.view(indices.shape+(self.e_dim,)).contiguous()
return z_q
def init_weight(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class ResBlock(nn.Module):
def __init__(self, channel):
super().__init__()
self.model = nn.Sequential(
nn.Conv1d(channel, channel, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv1d(channel, channel, 3, 1, 1),
)
def forward(self, x):
return self.model(x)+x
class VQEncoderV5(nn.Module):
def __init__(self, args):
super().__init__()
n_down = args.vae_layer
channels = [args.vae_length]*(n_down)
input_size = args.vae_test_dim
layers = [
nn.Conv1d(input_size, channels[0], 3, 1, 1),
nn.LeakyReLU(0.2, True),
ResBlock(channels[0]),
]
for i in range(1, n_down):
layers += [
nn.Conv1d(channels[i-1], channels[i], 3, 1, 1),
nn.LeakyReLU(0.2, True),
ResBlock(channels[i]),
]
self.main = nn.Sequential(*layers)
self.main.apply(init_weight)
def forward(self, inputs):
inputs = inputs.permute(0,2,1)
outputs = self.main(inputs).permute(0,2,1)
return outputs
class VQEncoderV6(nn.Module):
def __init__(self, args):
super().__init__()
n_down = args.vae_layer
channels = [args.vae_length]*(n_down)
input_size = args.vae_test_dim
layers = [
nn.Conv1d(input_size, channels[0], 3, 1, 1),
nn.LeakyReLU(0.2, True),
ResBlock(channels[0]),
]
for i in range(1, n_down):
layers += [
nn.Conv1d(channels[i-1], channels[i], 3, 1, 1),
nn.LeakyReLU(0.2, True),
ResBlock(channels[i]),
]
self.main = nn.Sequential(*layers)
self.main.apply(init_weight)
def forward(self, inputs):
inputs = inputs.permute(0,2,1)
outputs = self.main(inputs).permute(0,2,1)
return outputs
class VQDecoderV5(nn.Module):
def __init__(self, args):
super().__init__()
n_up = args.vae_layer
channels = [args.vae_length]*(n_up)+[args.vae_test_dim]
input_size = args.vae_length
n_resblk = 2
if input_size == channels[0]:
layers = []
else:
layers = [nn.Conv1d(input_size, channels[0], 3, 1, 1)]
for i in range(n_resblk):
layers += [ResBlock(channels[0])]
for i in range(n_up):
layers += [
nn.Conv1d(channels[i], channels[i+1], 3, 1, 1),
nn.LeakyReLU(0.2, True)
]
layers += [nn.Conv1d(channels[-1], channels[-1], 3, 1, 1)]
self.main = nn.Sequential(*layers)
self.main.apply(init_weight)
def forward(self, inputs):
inputs = inputs.permute(0,2,1)
outputs = self.main(inputs).permute(0,2,1)
return outputs
class BasicBlock(nn.Module):
""" based on timm: https://github.com/rwightman/pytorch-image-models """
def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv1d(
inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation,
dilation=dilation, bias=True)
self.bn1 = norm_layer(planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv1d(
planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True)
self.bn2 = norm_layer(planes)
self.act2 = act_layer(inplace=True)
if downsample is not None:
self.downsample = nn.Sequential(
nn.Conv1d(inplanes, planes, stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True),
norm_layer(planes),
)
else: self.downsample=None
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act2(x)
return x
class WavEncoder(nn.Module):
def __init__(self, out_dim, audio_in=1):
super().__init__()
self.out_dim = out_dim
self.feat_extractor = nn.Sequential(
BasicBlock(audio_in, out_dim//4, 15, 5, first_dilation=1600, downsample=True),
BasicBlock(out_dim//4, out_dim//4, 15, 6, first_dilation=0, downsample=True),
BasicBlock(out_dim//4, out_dim//4, 15, 1, first_dilation=7, ),
BasicBlock(out_dim//4, out_dim//2, 15, 6, first_dilation=0, downsample=True),
BasicBlock(out_dim//2, out_dim//2, 15, 1, first_dilation=7),
BasicBlock(out_dim//2, out_dim, 15, 3, first_dilation=0,downsample=True),
)
def forward(self, wav_data):
if wav_data.dim() == 2:
wav_data = wav_data.unsqueeze(1)
else:
wav_data = wav_data.transpose(1, 2)
out = self.feat_extractor(wav_data)
return out.transpose(1, 2)
class MLP(nn.Module):
def __init__(self, in_dim, middle_dim, out_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, middle_dim)
self.fc2 = nn.Linear(middle_dim, out_dim)
self.act = nn.LeakyReLU(0.1, True)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
class PeriodicPositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, period=15, max_seq_len=60):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(period, d_model)
position = torch.arange(0, period, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float()*(-math.log(10000.0)/d_model))
pe[:,0::2] = torch.sin(position*div_term)
pe[:,1::2] = torch.cos(position*div_term)
pe = pe.unsqueeze(0)
repeat_num = (max_seq_len//period)+1
pe = pe.repeat(1, repeat_num, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1), :]
return self.dropout(x) |