File size: 13,153 Bytes
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

def _copysign(a, b):
    signs_differ = (a < 0) != (b < 0)
    return torch.where(signs_differ, -a, a)

def _sqrt_positive_part(x):
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret

def matrix_to_quaternion(matrix):
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError
    m00 = matrix[..., 0, 0]
    m11 = matrix[..., 1, 1]
    m22 = matrix[..., 2, 2]
    o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
    x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
    y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
    z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
    o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
    o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
    o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
    return torch.stack((o0, o1, o2, o3), -1)

def quaternion_to_axis_angle(quaternions):
    norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
    half_angles = torch.atan2(norms, quaternions[..., :1])
    angles = 2 * half_angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles]*angles[small_angles])/48
    )
    return quaternions[..., 1:] / sin_half_angles_over_angles

def matrix_to_axis_angle(matrix):
    return quaternion_to_axis_angle(matrix_to_quaternion(matrix))

def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = F.normalize(a1, dim=-1)
    b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
    b2 = F.normalize(b2, dim=-1)
    b3 = torch.cross(b1, b2, dim=-1)
    return torch.stack((b1, b2, b3), dim=-2)

def rotation_6d_to_axis_angle(rot6d):
    return matrix_to_axis_angle(rotation_6d_to_matrix(rot6d))

def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
    return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)

def axis_angle_to_quaternion(axis_angle):
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
    half_angles = 0.5 * angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    quaternions = torch.cat(
        [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
    )
    return quaternions

def quaternion_to_matrix(quaternions):
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))

def axis_angle_to_matrix(axis_angle):
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))

def axis_angle_to_rotation_6d(axis_angle):
    return matrix_to_rotation_6d(axis_angle_to_matrix(axis_angle))


def velocity2position(data_seq, dt, init_pos):
    res_trans = []
    for i in range(data_seq.shape[1]):
        if i == 0:
            res_trans.append(init_pos.unsqueeze(1))
        else:
            res = data_seq[:, i-1:i] * dt + res_trans[-1]
            res_trans.append(res)
    return torch.cat(res_trans, dim=1)


def recover_from_mask_ts(selected_motion: torch.Tensor, mask: list) -> torch.Tensor:
    device = selected_motion.device
    dtype = selected_motion.dtype
    mask_arr = torch.tensor(mask, dtype=torch.bool, device=device)
    j = len(mask_arr)
    sum_mask = mask_arr.sum().item()
    c_channels = selected_motion.shape[-1] // sum_mask
    new_shape = selected_motion.shape[:-1] + (sum_mask, c_channels)
    selected_motion = selected_motion.reshape(new_shape)
    out_shape = list(selected_motion.shape[:-2]) + [j, c_channels]
    recovered = torch.zeros(out_shape, dtype=dtype, device=device)
    recovered[..., mask_arr, :] = selected_motion
    final_shape = list(recovered.shape[:-2]) + [j*c_channels]
    recovered = recovered.reshape(final_shape)
    return recovered


class Quantizer(nn.Module):
    def __init__(self, n_e, e_dim, beta):
        super().__init__()
        self.e_dim = e_dim
        self.n_e = n_e
        self.beta = beta
        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0/self.n_e, 1.0/self.n_e)

    def forward(self, z):
        assert z.shape[-1] == self.e_dim
        z_flattened = z.contiguous().view(-1, self.e_dim)
        d = torch.sum(z_flattened**2, dim=1, keepdim=True) + \
            torch.sum(self.embedding.weight**2, dim=1) - 2*torch.matmul(z_flattened, self.embedding.weight.t())
        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        loss = torch.mean((z_q - z.detach())**2) + self.beta*torch.mean((z_q.detach() - z)**2)
        z_q = z + (z_q - z).detach()
        min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
        e_mean = torch.mean(min_encodings, dim=0)
        perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean+1e-10)))
        return loss, z_q, min_encoding_indices, perplexity

    def map2index(self, z):
        assert z.shape[-1] == self.e_dim
        z_flattened = z.contiguous().view(-1, self.e_dim)
        d = torch.sum(z_flattened**2, dim=1, keepdim=True) + \
            torch.sum(self.embedding.weight**2, dim=1) - 2*torch.matmul(z_flattened, self.embedding.weight.t())
        min_encoding_indices = torch.argmin(d, dim=1)
        return min_encoding_indices.reshape(z.shape[0], -1)

    def get_codebook_entry(self, indices):
        index_flattened = indices.view(-1)
        z_q = self.embedding(index_flattened)
        z_q = z_q.view(indices.shape+(self.e_dim,)).contiguous()
        return z_q

def init_weight(m):
    if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
        nn.init.xavier_normal_(m.weight)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)

class ResBlock(nn.Module):
    def __init__(self, channel):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv1d(channel, channel, 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            nn.Conv1d(channel, channel, 3, 1, 1),
        )
    def forward(self, x):
        return self.model(x)+x

class VQEncoderV5(nn.Module):
    def __init__(self, args):
        super().__init__()
        n_down = args.vae_layer
        channels = [args.vae_length]*(n_down)
        input_size = args.vae_test_dim
        layers = [
            nn.Conv1d(input_size, channels[0], 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            ResBlock(channels[0]),
        ]
        for i in range(1, n_down):
            layers += [
                nn.Conv1d(channels[i-1], channels[i], 3, 1, 1),
                nn.LeakyReLU(0.2, True),
                ResBlock(channels[i]),
            ]
        self.main = nn.Sequential(*layers)
        self.main.apply(init_weight)
    def forward(self, inputs):
        inputs = inputs.permute(0,2,1)
        outputs = self.main(inputs).permute(0,2,1)
        return outputs

class VQEncoderV6(nn.Module):
    def __init__(self, args):
        super().__init__()
        n_down = args.vae_layer
        channels = [args.vae_length]*(n_down)
        input_size = args.vae_test_dim
        layers = [
            nn.Conv1d(input_size, channels[0], 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            ResBlock(channels[0]),
        ]
        for i in range(1, n_down):
            layers += [
                nn.Conv1d(channels[i-1], channels[i], 3, 1, 1),
                nn.LeakyReLU(0.2, True),
                ResBlock(channels[i]),
            ]
        self.main = nn.Sequential(*layers)
        self.main.apply(init_weight)
    def forward(self, inputs):
        inputs = inputs.permute(0,2,1)
        outputs = self.main(inputs).permute(0,2,1)
        return outputs

class VQDecoderV5(nn.Module):
    def __init__(self, args):
        super().__init__()
        n_up = args.vae_layer
        channels = [args.vae_length]*(n_up)+[args.vae_test_dim]
        input_size = args.vae_length
        n_resblk = 2
        if input_size == channels[0]:
            layers = []
        else:
            layers = [nn.Conv1d(input_size, channels[0], 3, 1, 1)]
        for i in range(n_resblk):
            layers += [ResBlock(channels[0])]
        for i in range(n_up):
            layers += [
                nn.Conv1d(channels[i], channels[i+1], 3, 1, 1),
                nn.LeakyReLU(0.2, True)
            ]
        layers += [nn.Conv1d(channels[-1], channels[-1], 3, 1, 1)]
        self.main = nn.Sequential(*layers)
        self.main.apply(init_weight)
    def forward(self, inputs):
        inputs = inputs.permute(0,2,1)
        outputs = self.main(inputs).permute(0,2,1)
        return outputs

class BasicBlock(nn.Module):
    """ based on timm: https://github.com/rwightman/pytorch-image-models """
    def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv1d(
            inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation,
            dilation=dilation, bias=True)
        self.bn1 = norm_layer(planes)
        self.act1 = act_layer(inplace=True)
        self.conv2 = nn.Conv1d(
            planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True)
        self.bn2 = norm_layer(planes)
        self.act2 = act_layer(inplace=True)
        if downsample is not None:
            self.downsample = nn.Sequential(
                nn.Conv1d(inplanes, planes,  stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True),
                norm_layer(planes), 
            )
        else: self.downsample=None

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        if self.downsample is not None:
            shortcut = self.downsample(shortcut)
        x += shortcut
        x = self.act2(x)
        return x

class WavEncoder(nn.Module):
    def __init__(self, out_dim, audio_in=1):
        super().__init__() 
        self.out_dim = out_dim
        self.feat_extractor = nn.Sequential( 
                BasicBlock(audio_in, out_dim//4, 15, 5, first_dilation=1600, downsample=True),
                BasicBlock(out_dim//4, out_dim//4, 15, 6, first_dilation=0, downsample=True),
                BasicBlock(out_dim//4, out_dim//4, 15, 1, first_dilation=7, ),
                BasicBlock(out_dim//4, out_dim//2, 15, 6, first_dilation=0, downsample=True),
                BasicBlock(out_dim//2, out_dim//2, 15, 1, first_dilation=7),
                BasicBlock(out_dim//2, out_dim, 15, 3,  first_dilation=0,downsample=True),     
            )
    def forward(self, wav_data):
        if wav_data.dim() == 2:
            wav_data = wav_data.unsqueeze(1) 
        else:
            wav_data = wav_data.transpose(1, 2)
        out = self.feat_extractor(wav_data)
        return out.transpose(1, 2)

class MLP(nn.Module):
    def __init__(self, in_dim, middle_dim, out_dim):
        super().__init__()
        self.fc1 = nn.Linear(in_dim, middle_dim)
        self.fc2 = nn.Linear(middle_dim, out_dim)
        self.act = nn.LeakyReLU(0.1, True)
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x

class PeriodicPositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, period=15, max_seq_len=60): 
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(period, d_model)
        position = torch.arange(0, period, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float()*(-math.log(10000.0)/d_model))
        pe[:,0::2] = torch.sin(position*div_term)
        pe[:,1::2] = torch.cos(position*div_term)
        pe = pe.unsqueeze(0)
        repeat_num = (max_seq_len//period)+1
        pe = pe.repeat(1, repeat_num, 1)
        self.register_buffer('pe', pe)
    def forward(self, x):
        x = x + self.pe[:, :x.size(1), :]
        return self.dropout(x)