Jac-Zac's picture
Update app.py
3ced1e5
#!/usr/bin/env python3
import streamlit as st
import torch
import os
from PIL import Image, ImageOps
from transformers import DonutProcessor
from transformers import VisionEncoderDecoderConfig
from transformers import VisionEncoderDecoderModel
def run_prediction(sample):
global pretrained_model, processor, task_prompt
if isinstance(sample, dict):
# prepare inputs
pixel_values = torch.tensor(sample["pixel_values"]).unsqueeze(0)
else: # sample is an image
# prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
decoder_input_ids = processor.tokenizer(
task_prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
# run inference
outputs = pretrained_model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=pretrained_model.decoder.config.max_position_embeddings,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# process output
prediction = processor.batch_decode(outputs.sequences)[0]
# post-processing
if "cord" in task_prompt:
prediction = prediction.replace(processor.tokenizer.eos_token, "").replace(
processor.tokenizer.pad_token, ""
)
# prediction = re.sub(r"<.*?>", "", prediction, count=1).strip() # remove first task start token
prediction = processor.token2json(prediction)
# load reference target
if isinstance(sample, dict):
target = processor.token2json(sample["target_sequence"])
else:
target = "<not_provided>"
return prediction, target
# Image processing change the orientation if needed and the size accordingly to the model we use
def preprocess_image(image, size):
# Resize the image to a specific size
image = image.resize(size)
# Automatically rotate the image based on its EXIF orientation metadata
image = ImageOps.exif_transpose(image)
return image
# What does this model do
task_prompt = "<s_herbarium>>"
st.markdown(
"""
### Donut Herbarium Testing
Experimental OCR-free Document Understanding Vision Transformer, fine-tuned with an herbarium dataset of around 1400 images.
"""
)
with st.sidebar:
information = st.radio(
"Choose one predictor:",
("Low Res (1200 * 900) 5 epochs", "Mid res (1600 * 1200) 10 epochs", "Mid res (1600 * 1200) 14 epochs", "Mid res new 0 epoch")
)
image_choice = st.selectbox("Pick one πŸ“‘", ["1", "2", "3","4"], index=0)
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
st.text(
f"{information} mode is ON!\nTarget πŸ“‘: {image_choice}"
) # \n(opening image @:./img/receipt-{receipt}.png)')
col1, col2 = st.columns(2)
# Chose image
if uploaded_file is not None:
image = Image.open(uploaded_file)
if information == "Low Res (1200 * 900) 5 epochs":
image = preprocess_image(image, (1200, 900))
else:
image = preprocess_image(image, (1200, 1600))
else:
image_choice_map = {
'1': 'examples/00021.jpg',
'2': 'examples/00031.jpg',
'3': 'examples/00050.jpg',
'4': 'examples/zero_name.jpg',
}
image = Image.open(image_choice_map[image_choice])
with col1:
st.image(image, caption="Your target sample")
# Run the model
if st.button("Parse sample! 🐍"):
image = image.convert("RGB")
# Choose which version to run base on the selected box
with st.spinner(f"Running the model on the target..."):
if information == "Low Res (1200 * 900) 5 epochs":
processor = DonutProcessor.from_pretrained(
"Jac-Zac/thesis_test_donut",
revision="12900abc6fb551a0ea339950462a6a0462820b75",
use_auth_token=os.environ["TOKEN"],
)
pretrained_model = VisionEncoderDecoderModel.from_pretrained(
"Jac-Zac/thesis_test_donut",
revision="12900abc6fb551a0ea339950462a6a0462820b75",
use_auth_token=os.environ["TOKEN"],
)
elif information == "Mid res (1600 * 1200) 10 epochs":
processor = DonutProcessor.from_pretrained(
"Jac-Zac/thesis_test_donut",
revision="8c5467cb66685e801ec6ff8de7e7fdd247274ed0",
use_auth_token=os.environ["TOKEN"],
)
pretrained_model = VisionEncoderDecoderModel.from_pretrained(
"Jac-Zac/thesis_test_donut",
revision="8c5467cb66685e801ec6ff8de7e7fdd247274ed0",
use_auth_token=os.environ["TOKEN"],
)
elif information == "Mid res (1600 * 1200) 14 epochs":
processor = DonutProcessor.from_pretrained(
"Jac-Zac/thesis_test_donut",
revision="ba396d4b3d39a4eaf7c8d4919b384ebcf6f0360f",
use_auth_token=os.environ["TOKEN"],
)
pretrained_model = VisionEncoderDecoderModel.from_pretrained(
"Jac-Zac/thesis_test_donut",
revision="ba396d4b3d39a4eaf7c8d4919b384ebcf6f0360f",
use_auth_token=os.environ["TOKEN"],
)
elif information == "Mid res new 0 epoch":
processor = DonutProcessor.from_pretrained(
"Jac-Zac/thesis_donut",
#revision="4d64fa9a156908aa3df0e0e39463d401528a15c9",
use_auth_token=os.environ["TOKEN"],
)
pretrained_model = VisionEncoderDecoderModel.from_pretrained(
"Jac-Zac/thesis_donut",
#revision="4d64fa9a156908aa3df0e0e39463d401528a15c9",
use_auth_token=os.environ["TOKEN"],
)
# this is the same for both models
task_prompt = f"<s_herbarium>"
device = "cuda" if torch.cuda.is_available() else "cpu"
pretrained_model.to(device)
with col2:
st.info(f"Parsing πŸ“‘...")
parsed_info, _ = run_prediction(image)
st.text(f"\n{information}")
st.json(parsed_info)