Jac-Zac commited on
Commit
3f6e42c
·
1 Parent(s): 2a90699

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -1,6 +1,7 @@
1
  #!/usr/bin/env python3
2
  import streamlit as st
3
  import torch
 
4
  from PIL import ExifTags
5
  from PIL import Image
6
  from transformers import DonutProcessor
@@ -102,13 +103,12 @@ col1, col2 = st.columns(2)
102
  if uploaded_file is not None:
103
  image = Image.open(uploaded_file)
104
  else:
105
- pass
106
- # image_choice_map = {
107
- # '1': '../donut_example/copy/img_resized/test/00021.jpg',
108
- # '2': '../donut_example/copy/img_resized/test/00031.jpg',
109
- # '3': '../donut_example/copy/img_resized/test/00050.jpg',
110
- # }
111
- # image = Image.open(image_choice_map[image_choice])
112
 
113
 
114
  if information == "Low Res (1200 * 900) 5 epochs":
@@ -129,20 +129,24 @@ if st.button("Parse sample! 🐍"):
129
  processor = DonutProcessor.from_pretrained(
130
  "Jac-Zac/thesis_test_donut",
131
  revision="12900abc6fb551a0ea339950462a6a0462820b75",
 
132
  )
133
  pretrained_model = VisionEncoderDecoderModel.from_pretrained(
134
  "Jac-Zac/thesis_test_donut",
135
  revision="12900abc6fb551a0ea339950462a6a0462820b75",
 
136
  )
137
 
138
  elif information == "Mid res (1600 ^ 1200) 10 epochs":
139
  processor = DonutProcessor.from_pretrained(
140
  "Jac-Zac/thesis_test_donut",
141
  revision="8c5467cb66685e801ec6ff8de7e7fdd247274ed0",
 
142
  )
143
  pretrained_model = VisionEncoderDecoderModel.from_pretrained(
144
  "Jac-Zac/thesis_test_donut",
145
  revision="8c5467cb66685e801ec6ff8de7e7fdd247274ed0",
 
146
  )
147
 
148
  # this is the same for both models
 
1
  #!/usr/bin/env python3
2
  import streamlit as st
3
  import torch
4
+ import os
5
  from PIL import ExifTags
6
  from PIL import Image
7
  from transformers import DonutProcessor
 
103
  if uploaded_file is not None:
104
  image = Image.open(uploaded_file)
105
  else:
106
+ image_choice_map = {
107
+ '1': '../donut_example/copy/img_resized/test/00021.jpg',
108
+ '2': '../donut_example/copy/img_resized/test/00031.jpg',
109
+ '3': '../donut_example/copy/img_resized/test/00050.jpg',
110
+ }
111
+ image = Image.open(image_choice_map[image_choice])
 
112
 
113
 
114
  if information == "Low Res (1200 * 900) 5 epochs":
 
129
  processor = DonutProcessor.from_pretrained(
130
  "Jac-Zac/thesis_test_donut",
131
  revision="12900abc6fb551a0ea339950462a6a0462820b75",
132
+ use_auth_token=os.environ["TOKEN"],
133
  )
134
  pretrained_model = VisionEncoderDecoderModel.from_pretrained(
135
  "Jac-Zac/thesis_test_donut",
136
  revision="12900abc6fb551a0ea339950462a6a0462820b75",
137
+ use_auth_token=os.environ["TOKEN"],
138
  )
139
 
140
  elif information == "Mid res (1600 ^ 1200) 10 epochs":
141
  processor = DonutProcessor.from_pretrained(
142
  "Jac-Zac/thesis_test_donut",
143
  revision="8c5467cb66685e801ec6ff8de7e7fdd247274ed0",
144
+ use_auth_token=os.environ["TOKEN"],
145
  )
146
  pretrained_model = VisionEncoderDecoderModel.from_pretrained(
147
  "Jac-Zac/thesis_test_donut",
148
  revision="8c5467cb66685e801ec6ff8de7e7fdd247274ed0",
149
+ use_auth_token=os.environ["TOKEN"],
150
  )
151
 
152
  # this is the same for both models