import gradio as gr from PIL import Image import requests from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cpu") def generate_caption(image_url): raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') # Unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cpu") out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption # Define the Gradio interface iface = gr.Interface( fn=generate_caption, inputs="text", # URL input outputs="text", # Caption output title="Image Captioning with BLIP", description="Provide an image URL, and the model will generate a caption." ) if __name__ == "__main__": iface.launch(share=True)