HEHEBOIOG commited on
Commit
2d9b6d1
·
verified ·
1 Parent(s): bf1734c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -60
app.py CHANGED
@@ -7,31 +7,38 @@ from langchain_community.tools.tavily_search import TavilySearchResults
7
  from crewai_tools import tool
8
  from crewai import Crew, Task, Agent
9
  from sentence_transformers import SentenceTransformer
 
10
 
11
- # Set environment variables from Hugging Face secrets
12
- os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API_KEY')
13
- os.environ['TAVILY_API_KEY'] = os.getenv('TAVILY_API_KEY')
14
 
 
 
 
 
 
15
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
16
 
17
  llm = ChatOpenAI(
18
  openai_api_base="https://api.groq.com/openai/v1",
19
- openai_api_key=os.environ['GROQ_API_KEY'],
20
  model_name="llama3-70b-8192",
21
  temperature=0.1,
22
  max_tokens=1000
23
  )
24
 
25
- rag_tool = PDFSearchTool(pdf='finance.pdf',
 
26
  config=dict(
27
  llm=dict(
28
- provider="groq",
29
  config=dict(
30
  model="llama3-8b-8192",
31
  ),
32
  ),
33
  embedder=dict(
34
- provider="huggingface",
35
  config=dict(
36
  model="BAAI/bge-small-en-v1.5",
37
  ),
@@ -39,19 +46,21 @@ rag_tool = PDFSearchTool(pdf='finance.pdf',
39
  )
40
  )
41
 
42
- web_search_tool = TavilySearchResults(k=3)
43
 
 
44
  @tool
45
- def router_tool(question):
46
- """Router Function"""
47
  return 'web_search'
48
 
 
49
  Router_Agent = Agent(
50
  role='Router',
51
  goal='Route user question to a vectorstore or web search',
52
  backstory=(
53
- "You are an expert at routing a user question to a vectorstore or web search."
54
- "Use the vectorstore for questions on concept related to Retrieval-Augmented Generation."
55
  "You do not need to be stringent with the keywords in the question related to these topics. Otherwise, use web-search."
56
  ),
57
  verbose=True,
@@ -63,8 +72,8 @@ Retriever_Agent = Agent(
63
  role="Retriever",
64
  goal="Use the information retrieved from the vectorstore to answer the question",
65
  backstory=(
66
- "You are an assistant for question-answering tasks."
67
- "Use the information present in the retrieved context to answer the question."
68
  "You have to provide a clear concise answer."
69
  ),
70
  verbose=True,
@@ -76,9 +85,9 @@ Grader_agent = Agent(
76
  role='Answer Grader',
77
  goal='Filter out erroneous retrievals',
78
  backstory=(
79
- "You are a grader assessing relevance of a retrieved document to a user question."
80
- "If the document contains keywords related to the user question, grade it as relevant."
81
- "It does not need to be a stringent test.You have to make sure that the answer is relevant to the question."
82
  ),
83
  verbose=True,
84
  allow_delegation=False,
@@ -89,8 +98,8 @@ hallucination_grader = Agent(
89
  role="Hallucination Grader",
90
  goal="Filter out hallucination",
91
  backstory=(
92
- "You are a hallucination grader assessing whether an answer is grounded in / supported by a set of facts."
93
- "Make sure you meticulously review the answer and check if the response provided is in alignment with the question asked"
94
  ),
95
  verbose=True,
96
  allow_delegation=False,
@@ -101,74 +110,93 @@ answer_grader = Agent(
101
  role="Answer Grader",
102
  goal="Filter out hallucination from the answer.",
103
  backstory=(
104
- "You are a grader assessing whether an answer is useful to resolve a question."
105
- "Make sure you meticulously review the answer and check if it makes sense for the question asked"
106
- "If the answer is relevant generate a clear and concise response."
107
- "If the answer generated is not relevant then perform a websearch using 'web_search_tool'"
108
  ),
109
  verbose=True,
110
  allow_delegation=False,
111
  llm=llm,
112
  )
113
 
 
114
  router_task = Task(
115
- description=("Analyse the keywords in the question {question}"
116
- "Based on the keywords decide whether it is eligible for a vectorstore search or a web search."
117
- "Return a single word 'vectorstore' if it is eligible for vectorstore search."
118
- "Return a single word 'websearch' if it is eligible for web search."
119
- "Do not provide any other preamble or explanation."
 
 
 
 
 
120
  ),
121
- expected_output=("Give a binary choice 'websearch' or 'vectorstore' based on the question"
122
- "Do not provide any other preamble or explanation."),
123
  agent=Router_Agent,
124
  tools=[router_tool],
125
  )
126
 
127
  retriever_task = Task(
128
- description=("Based on the response from the router task extract information for the question {question} with the help of the respective tool."
129
- "Use the web_search_tool to retrieve information from the web in case the router task output is 'websearch'."
130
- "Use the rag_tool to retrieve information from the vectorstore in case the router task output is 'vectorstore'."
 
 
 
 
 
 
 
131
  ),
132
- expected_output=("You should analyse the output of the 'router_task'"
133
- "If the response is 'websearch' then use the web_search_tool to retrieve information from the web."
134
- "If the response is 'vectorstore' then use the rag_tool to retrieve information from the vectorstore."
135
- "Return a clear and concise text as response."),
136
  agent=Retriever_Agent,
137
  context=[router_task],
138
  )
139
 
140
  grader_task = Task(
141
- description=("Based on the response from the retriever task for the question {question} evaluate whether the retrieved content is relevant to the question."
 
 
 
 
 
 
 
142
  ),
143
- expected_output=("Binary score 'yes' or 'no' score to indicate whether the document is relevant to the question"
144
- "You must answer 'yes' if the response from the 'retriever_task' is in alignment with the question asked."
145
- "You must answer 'no' if the response from the 'retriever_task' is not in alignment with the question asked."
146
- "Do not provide any preamble or explanations except for 'yes' or 'no'."),
147
  agent=Grader_agent,
148
  context=[retriever_task],
149
  )
150
 
151
  hallucination_task = Task(
152
- description=("Based on the response from the grader task for the question {question} evaluate whether the answer is grounded in / supported by a set of facts."),
153
- expected_output=("Binary score 'yes' or 'no' score to indicate whether the answer is sync with the question asked"
154
- "Respond 'yes' if the answer is useful and contains fact about the question asked."
155
- "Respond 'no' if the answer is not useful and does not contains fact about the question asked."
156
- "Do not provide any preamble or explanations except for 'yes' or 'no'."),
 
 
 
 
157
  agent=hallucination_grader,
158
  context=[grader_task],
159
  )
160
 
161
  answer_task = Task(
162
- description=("Based on the response from the hallucination task for the question {question} evaluate whether the answer is useful to resolve the question."
163
- "If the answer is 'yes' return a clear and concise answer."
164
- "If the answer is 'no' then perform a 'websearch' and return the response"),
165
- expected_output=("Return a clear and concise response if the response from 'hallucination_task' is 'yes'."
166
- "Perform a web search using 'web_search_tool' and return a clear and concise response only if the response from 'hallucination_task' is 'no'."
167
- "Otherwise respond as 'Sorry! unable to find a valid response'."),
 
 
 
 
168
  context=[hallucination_task],
169
  agent=answer_grader,
170
  )
171
 
 
172
  rag_crew = Crew(
173
  agents=[Router_Agent, Retriever_Agent, Grader_agent, hallucination_grader, answer_grader],
174
  tasks=[router_task, retriever_task, grader_task, hallucination_task, answer_task],
@@ -176,13 +204,14 @@ rag_crew = Crew(
176
  )
177
 
178
  def respond(
179
- message,
180
- history: list[tuple[str, str]],
181
- system_message,
182
- max_tokens,
183
- temperature,
184
- top_p,
185
  ):
 
186
  messages = [{"role": "system", "content": system_message}]
187
 
188
  for val in history:
@@ -208,6 +237,7 @@ def respond(
208
  response += token
209
  yield response
210
 
 
211
  demo = gr.ChatInterface(
212
  respond,
213
  additional_inputs=[
@@ -225,4 +255,4 @@ demo = gr.ChatInterface(
225
  )
226
 
227
  if __name__ == "__main__":
228
- demo.launch()
 
7
  from crewai_tools import tool
8
  from crewai import Crew, Task, Agent
9
  from sentence_transformers import SentenceTransformer
10
+ from typing import List, Tuple
11
 
12
+ # === Hardcoded API Keys ===
13
+ GROQ_API_KEY = "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"
14
+ TAVILY_API_KEY = "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"
15
 
16
+ # Set environment variables for API keys
17
+ os.environ['GROQ_API_KEY'] = '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'
18
+ os.environ['TAVILY_API_KEY'] = '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'
19
+
20
+ # === Model and Tool Initialization ===
21
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
22
 
23
  llm = ChatOpenAI(
24
  openai_api_base="https://api.groq.com/openai/v1",
25
+ openai_api_key=GROQ_API_KEY,
26
  model_name="llama3-70b-8192",
27
  temperature=0.1,
28
  max_tokens=1000
29
  )
30
 
31
+ rag_tool = PDFSearchTool(
32
+ pdf='finance.pdf',
33
  config=dict(
34
  llm=dict(
35
+ provider="groq",
36
  config=dict(
37
  model="llama3-8b-8192",
38
  ),
39
  ),
40
  embedder=dict(
41
+ provider="huggingface",
42
  config=dict(
43
  model="BAAI/bge-small-en-v1.5",
44
  ),
 
46
  )
47
  )
48
 
49
+ web_search_tool = TavilySearchResults(k=3, api_key=TAVILY_API_KEY)
50
 
51
+ # === Tool Definitions ===
52
  @tool
53
+ def router_tool(question: str) -> str:
54
+ """Router Function: Decides between web search and vectorstore."""
55
  return 'web_search'
56
 
57
+ # === Agent Definitions ===
58
  Router_Agent = Agent(
59
  role='Router',
60
  goal='Route user question to a vectorstore or web search',
61
  backstory=(
62
+ "You are an expert at routing a user question to a vectorstore or web search. "
63
+ "Use the vectorstore for questions on concept related to Retrieval-Augmented Generation. "
64
  "You do not need to be stringent with the keywords in the question related to these topics. Otherwise, use web-search."
65
  ),
66
  verbose=True,
 
72
  role="Retriever",
73
  goal="Use the information retrieved from the vectorstore to answer the question",
74
  backstory=(
75
+ "You are an assistant for question-answering tasks. "
76
+ "Use the information present in the retrieved context to answer the question. "
77
  "You have to provide a clear concise answer."
78
  ),
79
  verbose=True,
 
85
  role='Answer Grader',
86
  goal='Filter out erroneous retrievals',
87
  backstory=(
88
+ "You are a grader assessing relevance of a retrieved document to a user question. "
89
+ "If the document contains keywords related to the user question, grade it as relevant. "
90
+ "It does not need to be a stringent test. You have to make sure that the answer is relevant to the question."
91
  ),
92
  verbose=True,
93
  allow_delegation=False,
 
98
  role="Hallucination Grader",
99
  goal="Filter out hallucination",
100
  backstory=(
101
+ "You are a hallucination grader assessing whether an answer is grounded in / supported by a set of facts. "
102
+ "Make sure you meticulously review the answer and check if the response provided is in alignment with the question asked."
103
  ),
104
  verbose=True,
105
  allow_delegation=False,
 
110
  role="Answer Grader",
111
  goal="Filter out hallucination from the answer.",
112
  backstory=(
113
+ "You are a grader assessing whether an answer is useful to resolve a question. "
114
+ "Make sure you meticulously review the answer and check if it makes sense for the question asked. "
115
+ "If the answer is relevant generate a clear and concise response. "
116
+ "If the answer generated is not relevant then perform a websearch using 'web_search_tool'."
117
  ),
118
  verbose=True,
119
  allow_delegation=False,
120
  llm=llm,
121
  )
122
 
123
+ # === Task Definitions ===
124
  router_task = Task(
125
+ description=(
126
+ "Analyse the keywords in the question {question}. "
127
+ "Based on the keywords decide whether it is eligible for a vectorstore search or a web search. "
128
+ "Return a single word 'vectorstore' if it is eligible for vectorstore search. "
129
+ "Return a single word 'websearch' if it is eligible for web search. "
130
+ "Do not provide any other preamble or explanation."
131
+ ),
132
+ expected_output=(
133
+ "Give a binary choice 'websearch' or 'vectorstore' based on the question. "
134
+ "Do not provide any other preamble or explanation."
135
  ),
 
 
136
  agent=Router_Agent,
137
  tools=[router_tool],
138
  )
139
 
140
  retriever_task = Task(
141
+ description=(
142
+ "Based on the response from the router task extract information for the question {question} with the help of the respective tool. "
143
+ "Use the web_search_tool to retrieve information from the web in case the router task output is 'websearch'. "
144
+ "Use the rag_tool to retrieve information from the vectorstore in case the router task output is 'vectorstore'."
145
+ ),
146
+ expected_output=(
147
+ "You should analyse the output of the 'router_task'. "
148
+ "If the response is 'websearch' then use the web_search_tool to retrieve information from the web. "
149
+ "If the response is 'vectorstore' then use the rag_tool to retrieve information from the vectorstore. "
150
+ "Return a clear and concise text as response."
151
  ),
 
 
 
 
152
  agent=Retriever_Agent,
153
  context=[router_task],
154
  )
155
 
156
  grader_task = Task(
157
+ description=(
158
+ "Based on the response from the retriever task for the question {question} evaluate whether the retrieved content is relevant to the question."
159
+ ),
160
+ expected_output=(
161
+ "Binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. "
162
+ "You must answer 'yes' if the response from the 'retriever_task' is in alignment with the question asked. "
163
+ "You must answer 'no' if the response from the 'retriever_task' is not in alignment with the question asked. "
164
+ "Do not provide any preamble or explanations except for 'yes' or 'no'."
165
  ),
 
 
 
 
166
  agent=Grader_agent,
167
  context=[retriever_task],
168
  )
169
 
170
  hallucination_task = Task(
171
+ description=(
172
+ "Based on the response from the grader task for the question {question} evaluate whether the answer is grounded in / supported by a set of facts."
173
+ ),
174
+ expected_output=(
175
+ "Binary score 'yes' or 'no' score to indicate whether the answer is sync with the question asked. "
176
+ "Respond 'yes' if the answer is useful and contains fact about the question asked. "
177
+ "Respond 'no' if the answer is not useful and does not contains fact about the question asked. "
178
+ "Do not provide any preamble or explanations except for 'yes' or 'no'."
179
+ ),
180
  agent=hallucination_grader,
181
  context=[grader_task],
182
  )
183
 
184
  answer_task = Task(
185
+ description=(
186
+ "Based on the response from the hallucination task for the question {question} evaluate whether the answer is useful to resolve the question. "
187
+ "If the answer is 'yes' return a clear and concise answer. "
188
+ "If the answer is 'no' then perform a 'websearch' and return the response."
189
+ ),
190
+ expected_output=(
191
+ "Return a clear and concise response if the response from 'hallucination_task' is 'yes'. "
192
+ "Perform a web search using 'web_search_tool' and return a clear and concise response only if the response from 'hallucination_task' is 'no'. "
193
+ "Otherwise respond as 'Sorry! unable to find a valid response'."
194
+ ),
195
  context=[hallucination_task],
196
  agent=answer_grader,
197
  )
198
 
199
+ # === Crew Definition ===
200
  rag_crew = Crew(
201
  agents=[Router_Agent, Retriever_Agent, Grader_agent, hallucination_grader, answer_grader],
202
  tasks=[router_task, retriever_task, grader_task, hallucination_task, answer_task],
 
204
  )
205
 
206
  def respond(
207
+ message: str,
208
+ history: List[Tuple[str, str]],
209
+ system_message: str,
210
+ max_tokens: int,
211
+ temperature: float,
212
+ top_p: float,
213
  ):
214
+ """Main response function for Gradio chat interface."""
215
  messages = [{"role": "system", "content": system_message}]
216
 
217
  for val in history:
 
237
  response += token
238
  yield response
239
 
240
+ # === Gradio Interface ===
241
  demo = gr.ChatInterface(
242
  respond,
243
  additional_inputs=[
 
255
  )
256
 
257
  if __name__ == "__main__":
258
+ demo.launch()