Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from sentence_transformers import SentenceTransformer, util | |
import torch | |
import gdown | |
import os | |
import pandas as pd | |
# Download the file | |
file_id = '1P3Nz6f3KG0m0kO_2pEfnVIhgP8Bvkl4v' | |
url = f'https://drive.google.com/uc?id={file_id}' | |
excel_file_path = os.path.join(os.path.expanduser("~"), 'medical_data.csv') | |
gdown.download(url, excel_file_path, quiet=False) | |
# Read the CSV file into a DataFrame using 'latin1' encoding | |
try: | |
medical_df = pd.read_csv(excel_file_path, encoding='utf-8') | |
except UnicodeDecodeError: | |
medical_df = pd.read_csv(excel_file_path, encoding='latin1') | |
# TF-IDF Vectorization | |
vectorizer = TfidfVectorizer(stop_words='english') | |
X_tfidf = vectorizer.fit_transform(medical_df['Questions']) | |
# Load pre-trained GPT-2 model and tokenizer | |
model_name = "sshleifer/tiny-gpt2" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
# Load pre-trained Sentence Transformer model | |
sbert_model_name = "paraphrase-MiniLM-L6-v2" | |
sbert_model = SentenceTransformer(sbert_model_name) | |
# Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity | |
def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df): | |
# TF-IDF Cosine Similarity | |
question_vector = vectorizer.transform([question]) | |
tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten() | |
# Find the most similar question using semantic similarity | |
question_embedding = sbert_model.encode(question, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df['Questions'].tolist(), convert_to_tensor=True)).flatten() | |
max_sim_index = similarities.argmax().item() | |
# LLM response generation | |
input_text = "DiBot: " + medical_df.iloc[max_sim_index]['Questions'] | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long) | |
pad_token_id = tokenizer.eos_token_id | |
lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id) | |
lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True) | |
# Compare similarities and choose the best response | |
if tfidf_similarities.max() > 0.5: | |
tfidf_index = tfidf_similarities.argmax() | |
return medical_df.iloc[tfidf_index]['Answers'] | |
else: | |
return lm_generated_response | |
# Streamlit app | |
st.title("DiBot") | |
user_input = st.text_input("You:") | |
if user_input.lower() == "exit": | |
st.stop() | |
response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df) | |
st.text_area("Bot's Response:", response) | |