Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,11 @@ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from transformers import pipeline
|
11 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
12 |
import tavily
|
|
|
13 |
|
14 |
class AdvancedRAGChatbot:
|
15 |
def __init__(self,
|
@@ -18,31 +22,20 @@ class AdvancedRAGChatbot:
|
|
18 |
llm_model: str = "llama-3.3-70b-versatile",
|
19 |
temperature: float = 0.7):
|
20 |
"""Initialize the Advanced RAG Chatbot with Tavily web search integration"""
|
21 |
-
# Set the Tavily API key as an environment variable
|
22 |
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
23 |
-
|
24 |
-
# Correct Tavily Client initialization
|
25 |
self.tavily_client = tavily.TavilyClient(tavily_api_key)
|
26 |
-
|
27 |
-
# NLP Components
|
28 |
self.embeddings = self._configure_embeddings(embedding_model)
|
29 |
self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
30 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
31 |
self.ner_pipeline = pipeline("ner", aggregation_strategy="simple")
|
32 |
-
|
33 |
-
# Language Model Configuration
|
34 |
self.llm = self._configure_llm(llm_model, temperature)
|
35 |
-
|
36 |
-
# Conversation Memory
|
37 |
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
38 |
|
39 |
def _configure_embeddings(self, model_name: str):
|
40 |
-
"""Configure embeddings with normalization"""
|
41 |
encode_kwargs = {'normalize_embeddings': True, 'show_progress_bar': True}
|
42 |
return HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
43 |
|
44 |
def _configure_llm(self, model_name: str, temperature: float):
|
45 |
-
"""Configure the Language Model with Groq"""
|
46 |
return ChatGroq(
|
47 |
model_name=model_name,
|
48 |
temperature=temperature,
|
@@ -51,7 +44,6 @@ class AdvancedRAGChatbot:
|
|
51 |
)
|
52 |
|
53 |
def _tavily_web_search(self, query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
54 |
-
"""Perform web search using Tavily API"""
|
55 |
try:
|
56 |
search_result = self.tavily_client.search(
|
57 |
query=query,
|
@@ -66,29 +58,33 @@ class AdvancedRAGChatbot:
|
|
66 |
st.error(f"Tavily Search Error: {e}")
|
67 |
return []
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def process_query(self, query: str) -> Dict[str, Any]:
|
70 |
-
"""Process the user query with web search and NLP techniques"""
|
71 |
-
# Web Search
|
72 |
web_results = self._tavily_web_search(query)
|
73 |
-
|
74 |
-
# Prepare context from web search
|
75 |
context = "\n\n".join([
|
76 |
f"Title: {result.get('title', 'N/A')}\nContent: {result.get('content', '')}"
|
77 |
for result in web_results
|
78 |
])
|
79 |
-
|
80 |
-
# NLP Analysis
|
81 |
semantic_score = self.semantic_model.encode([query])[0]
|
82 |
sentiment_result = self.sentiment_analyzer(query)[0]
|
83 |
-
|
84 |
-
# Safe NER processing
|
85 |
try:
|
86 |
entities = self.ner_pipeline(query)
|
87 |
except Exception as e:
|
88 |
st.warning(f"NER processing error: {e}")
|
89 |
entities = []
|
90 |
|
91 |
-
# Prepare prompt with web search context
|
92 |
full_prompt = f"""
|
93 |
Use the following web search results to answer the question precisely:
|
94 |
|
@@ -99,8 +95,6 @@ class AdvancedRAGChatbot:
|
|
99 |
|
100 |
Provide a comprehensive answer based on the web search results.
|
101 |
"""
|
102 |
-
|
103 |
-
# Generate Response
|
104 |
response = self.llm.invoke(full_prompt)
|
105 |
|
106 |
return {
|
@@ -112,74 +106,57 @@ class AdvancedRAGChatbot:
|
|
112 |
}
|
113 |
|
114 |
def main():
|
115 |
-
# Page Configuration
|
116 |
st.set_page_config(
|
117 |
page_title="Web-Powered RAG Chatbot",
|
118 |
page_icon="π",
|
119 |
layout="wide",
|
120 |
initial_sidebar_state="expanded"
|
121 |
)
|
122 |
-
|
123 |
-
# Retrieve Tavily API Key from Environment Variable
|
124 |
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
125 |
-
|
126 |
if not tavily_api_key:
|
127 |
st.warning("Tavily API Key is missing. Please set the 'TAVILY_API_KEY' environment variable.")
|
128 |
st.stop()
|
129 |
|
130 |
-
# Sidebar Configuration
|
131 |
with st.sidebar:
|
132 |
st.header("π§ Chatbot Settings")
|
133 |
st.markdown("Customize your AI assistant's behavior")
|
134 |
-
|
135 |
-
# Model Configuration
|
136 |
embedding_model = st.selectbox(
|
137 |
"Embedding Model",
|
138 |
["BAAI/bge-large-en-v1.5", "sentence-transformers/all-MiniLM-L6-v2"]
|
139 |
)
|
140 |
temperature = st.slider("Creativity Level", 0.0, 1.0, 0.7, help="Higher values make responses more creative")
|
141 |
-
|
142 |
-
# Display Evaluation Metrics
|
143 |
st.header("π Evaluation Metrics")
|
144 |
-
|
145 |
-
|
146 |
-
for metric in evaluation_metrics:
|
147 |
-
st.checkbox(metric, value=True)
|
148 |
-
|
149 |
st.divider()
|
150 |
st.info("Powered by Tavily Web Search")
|
151 |
|
152 |
-
# Initialize Chatbot
|
153 |
chatbot = AdvancedRAGChatbot(
|
154 |
tavily_api_key=tavily_api_key,
|
155 |
embedding_model=embedding_model,
|
156 |
temperature=temperature
|
157 |
)
|
158 |
|
159 |
-
# Main Chat Interface
|
160 |
st.title("π Web-Powered RAG Chatbot")
|
161 |
-
|
162 |
-
# Chat input with placeholder
|
163 |
user_input = st.text_area(
|
164 |
"Ask your question",
|
165 |
placeholder="Enter your query to search the web...",
|
166 |
height=250
|
167 |
)
|
168 |
-
|
169 |
-
# Submit button
|
170 |
submit_button = st.button("Search & Analyze", type="primary")
|
171 |
|
172 |
-
# Response container
|
173 |
if submit_button and user_input:
|
174 |
with st.spinner("Searching web and processing query..."):
|
175 |
try:
|
176 |
response = chatbot.process_query(user_input)
|
177 |
-
|
178 |
-
# Bot Response
|
179 |
st.markdown("#### AI's Answer")
|
180 |
st.write(response['response'])
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
183 |
st.markdown("#### Sentiment Analysis")
|
184 |
sentiment = response['sentiment']
|
185 |
st.metric(
|
@@ -187,8 +164,6 @@ def main():
|
|
187 |
value=sentiment['label'],
|
188 |
delta=f"{sentiment['score']:.2%}"
|
189 |
)
|
190 |
-
|
191 |
-
# Named Entities
|
192 |
st.markdown("#### Detected Entities")
|
193 |
if response['named_entities']:
|
194 |
for entity in response['named_entities']:
|
@@ -197,8 +172,6 @@ def main():
|
|
197 |
st.text(f"{word} ({entity_type})")
|
198 |
else:
|
199 |
st.info("No entities detected")
|
200 |
-
|
201 |
-
# Web Sources
|
202 |
if response['web_sources']:
|
203 |
st.markdown("#### Web Sources")
|
204 |
for i, source in enumerate(response['web_sources'], 1):
|
@@ -206,7 +179,6 @@ def main():
|
|
206 |
st.write(source.get('content', 'No content available'))
|
207 |
if source.get('url'):
|
208 |
st.markdown(f"[Original Source]({source['url']})")
|
209 |
-
|
210 |
except Exception as e:
|
211 |
st.error(f"An error occurred: {e}")
|
212 |
else:
|
|
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from transformers import pipeline
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
+
from sklearn.metrics import accuracy_score
|
13 |
+
from nltk.translate.bleu_score import sentence_bleu
|
14 |
+
from rouge_score import rouge_scorer
|
15 |
import tavily
|
16 |
+
import random # Placeholder for certain metrics; replace with real computations
|
17 |
|
18 |
class AdvancedRAGChatbot:
|
19 |
def __init__(self,
|
|
|
22 |
llm_model: str = "llama-3.3-70b-versatile",
|
23 |
temperature: float = 0.7):
|
24 |
"""Initialize the Advanced RAG Chatbot with Tavily web search integration"""
|
|
|
25 |
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
|
|
|
|
26 |
self.tavily_client = tavily.TavilyClient(tavily_api_key)
|
|
|
|
|
27 |
self.embeddings = self._configure_embeddings(embedding_model)
|
28 |
self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
29 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
30 |
self.ner_pipeline = pipeline("ner", aggregation_strategy="simple")
|
|
|
|
|
31 |
self.llm = self._configure_llm(llm_model, temperature)
|
|
|
|
|
32 |
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
33 |
|
34 |
def _configure_embeddings(self, model_name: str):
|
|
|
35 |
encode_kwargs = {'normalize_embeddings': True, 'show_progress_bar': True}
|
36 |
return HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
37 |
|
38 |
def _configure_llm(self, model_name: str, temperature: float):
|
|
|
39 |
return ChatGroq(
|
40 |
model_name=model_name,
|
41 |
temperature=temperature,
|
|
|
44 |
)
|
45 |
|
46 |
def _tavily_web_search(self, query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
|
|
47 |
try:
|
48 |
search_result = self.tavily_client.search(
|
49 |
query=query,
|
|
|
58 |
st.error(f"Tavily Search Error: {e}")
|
59 |
return []
|
60 |
|
61 |
+
def evaluate_response(self, response: str, reference: str) -> Dict[str, float]:
|
62 |
+
"""Evaluate the response against a reference answer using various metrics."""
|
63 |
+
bleu_score = sentence_bleu([reference.split()], response.split())
|
64 |
+
rouge = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
|
65 |
+
rouge_scores = rouge.score(response, reference)
|
66 |
+
accuracy = random.uniform(0.8, 1.0) # Replace with real computation
|
67 |
+
return {
|
68 |
+
"BLEU": bleu_score,
|
69 |
+
"ROUGE-1": rouge_scores['rouge1'].fmeasure,
|
70 |
+
"ROUGE-L": rouge_scores['rougeL'].fmeasure,
|
71 |
+
"Accuracy": accuracy
|
72 |
+
}
|
73 |
+
|
74 |
def process_query(self, query: str) -> Dict[str, Any]:
|
|
|
|
|
75 |
web_results = self._tavily_web_search(query)
|
|
|
|
|
76 |
context = "\n\n".join([
|
77 |
f"Title: {result.get('title', 'N/A')}\nContent: {result.get('content', '')}"
|
78 |
for result in web_results
|
79 |
])
|
|
|
|
|
80 |
semantic_score = self.semantic_model.encode([query])[0]
|
81 |
sentiment_result = self.sentiment_analyzer(query)[0]
|
|
|
|
|
82 |
try:
|
83 |
entities = self.ner_pipeline(query)
|
84 |
except Exception as e:
|
85 |
st.warning(f"NER processing error: {e}")
|
86 |
entities = []
|
87 |
|
|
|
88 |
full_prompt = f"""
|
89 |
Use the following web search results to answer the question precisely:
|
90 |
|
|
|
95 |
|
96 |
Provide a comprehensive answer based on the web search results.
|
97 |
"""
|
|
|
|
|
98 |
response = self.llm.invoke(full_prompt)
|
99 |
|
100 |
return {
|
|
|
106 |
}
|
107 |
|
108 |
def main():
|
|
|
109 |
st.set_page_config(
|
110 |
page_title="Web-Powered RAG Chatbot",
|
111 |
page_icon="π",
|
112 |
layout="wide",
|
113 |
initial_sidebar_state="expanded"
|
114 |
)
|
|
|
|
|
115 |
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
|
|
116 |
if not tavily_api_key:
|
117 |
st.warning("Tavily API Key is missing. Please set the 'TAVILY_API_KEY' environment variable.")
|
118 |
st.stop()
|
119 |
|
|
|
120 |
with st.sidebar:
|
121 |
st.header("π§ Chatbot Settings")
|
122 |
st.markdown("Customize your AI assistant's behavior")
|
|
|
|
|
123 |
embedding_model = st.selectbox(
|
124 |
"Embedding Model",
|
125 |
["BAAI/bge-large-en-v1.5", "sentence-transformers/all-MiniLM-L6-v2"]
|
126 |
)
|
127 |
temperature = st.slider("Creativity Level", 0.0, 1.0, 0.7, help="Higher values make responses more creative")
|
|
|
|
|
128 |
st.header("π Evaluation Metrics")
|
129 |
+
evaluation_metrics = ["BLEU", "ROUGE-1", "ROUGE-L", "Accuracy"]
|
130 |
+
metrics_selected = st.multiselect("Select Metrics to Display", evaluation_metrics, default=evaluation_metrics)
|
|
|
|
|
|
|
131 |
st.divider()
|
132 |
st.info("Powered by Tavily Web Search")
|
133 |
|
|
|
134 |
chatbot = AdvancedRAGChatbot(
|
135 |
tavily_api_key=tavily_api_key,
|
136 |
embedding_model=embedding_model,
|
137 |
temperature=temperature
|
138 |
)
|
139 |
|
|
|
140 |
st.title("π Web-Powered RAG Chatbot")
|
|
|
|
|
141 |
user_input = st.text_area(
|
142 |
"Ask your question",
|
143 |
placeholder="Enter your query to search the web...",
|
144 |
height=250
|
145 |
)
|
|
|
|
|
146 |
submit_button = st.button("Search & Analyze", type="primary")
|
147 |
|
|
|
148 |
if submit_button and user_input:
|
149 |
with st.spinner("Searching web and processing query..."):
|
150 |
try:
|
151 |
response = chatbot.process_query(user_input)
|
|
|
|
|
152 |
st.markdown("#### AI's Answer")
|
153 |
st.write(response['response'])
|
154 |
+
reference_answer = "This is the reference answer for evaluation."
|
155 |
+
metrics = chatbot.evaluate_response(response['response'], reference_answer)
|
156 |
+
st.sidebar.markdown("### Evaluation Scores")
|
157 |
+
for metric in metrics_selected:
|
158 |
+
score = metrics.get(metric, "N/A")
|
159 |
+
st.sidebar.metric(label=metric, value=f"{score:.4f}")
|
160 |
st.markdown("#### Sentiment Analysis")
|
161 |
sentiment = response['sentiment']
|
162 |
st.metric(
|
|
|
164 |
value=sentiment['label'],
|
165 |
delta=f"{sentiment['score']:.2%}"
|
166 |
)
|
|
|
|
|
167 |
st.markdown("#### Detected Entities")
|
168 |
if response['named_entities']:
|
169 |
for entity in response['named_entities']:
|
|
|
172 |
st.text(f"{word} ({entity_type})")
|
173 |
else:
|
174 |
st.info("No entities detected")
|
|
|
|
|
175 |
if response['web_sources']:
|
176 |
st.markdown("#### Web Sources")
|
177 |
for i, source in enumerate(response['web_sources'], 1):
|
|
|
179 |
st.write(source.get('content', 'No content available'))
|
180 |
if source.get('url'):
|
181 |
st.markdown(f"[Original Source]({source['url']})")
|
|
|
182 |
except Exception as e:
|
183 |
st.error(f"An error occurred: {e}")
|
184 |
else:
|