Spaces:
Sleeping
Sleeping
File size: 10,579 Bytes
d66dbed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, BitsAndBytesConfig
import tempfile
from huggingface_hub import HfApi
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from packaging import version
import os
import spaces
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
# ^ expect a gr.OAuthProfile object as input to get the user's profile
# if the user is not logged in, profile will be None
if profile is None:
return "Hello !"
return f"Hello {profile.name} !"
def check_model_exists(oauth_token: gr.OAuthToken | None, username, quantization_type, model_name, quantized_model_name):
"""Check if a model exists in the user's Hugging Face repository."""
try:
models = list_models(author=username, token=oauth_token.token)
model_names = [model.id for model in models]
if quantized_model_name :
repo_name = f"{username}/{quantized_model_name}"
else :
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-{quantization_type}"
if repo_name in model_names:
return f"Model '{repo_name}' already exists in your repository."
else:
return None # Model does not exist
except Exception as e:
return f"Error checking model existence: {str(e)}"
def create_model_card(model_name, quantization_type, threshold, quant_type_4, double_quant_4,):
model_card = f"""---
base_model:
- {model_name}
---
# {model_name} (Quantized)
## Description
This model is a quantized version of the original model `{model_name}`. It has been quantized using {quantization_type} quantization with bitsandbytes.
## Quantization Details
- **Quantization Type**: {quantization_type}
- **Threshold**: {threshold if quantization_type == "int8" else None}
- **bnb_4bit_quant_type**: {quant_type_4 if quantization_type == "int4" else None}
- **bnb_4bit_use_double_quant**: {double_quant_4 if quantization_type=="int4" else None}
## Usage
You can use this model in your applications by loading it directly from the Hugging Face Hub:
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("{model_name}")"""
return model_card
def load_model(model_name, quantization_config, auth_token) :
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cuda", use_auth_token=auth_token.token)
def load_model_cpu(model_name, quantization_config, auth_token) :
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, use_auth_token=auth_token.token)
def quantize_model(model_name, quantization_type, threshold, quant_type_4, double_quant_4, auth_token=None, username=None):
print(f"Quantizing model: {quantization_type}")
if quantization_type=="int4":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type=quant_type_4,
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
)
else :
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=threshold,
)
model = load_model(model_name, quantization_config=quantization_config, auth_token=auth_token)
return model
def save_model(model, model_name, quantization_type, threshold, quant_type_4, double_quant_4, username=None, auth_token=None, quantized_model_name=None):
print("Saving quantized model")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False, use_auth_token=auth_token.token)
if quantized_model_name :
repo_name = f"{username}/{quantized_model_name}"
else :
if quantization_type == "int4_weight_only" :
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-{quantization_type}"
else :
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-{quantization_type}"
model_card = create_model_card(repo_name, quantization_type, threshold, quant_type_4, double_quant_4)
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
f.write(model_card)
# Push to Hub
api = HfApi(token=auth_token.token)
api.create_repo(repo_name, exist_ok=True)
api.upload_folder(
folder_path=tmpdirname,
repo_id=repo_name,
repo_type="model",
)
return f'<h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a>'
def is_float(value):
try:
float(value)
return True
except ValueError:
return False
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quantization_type, threshold, quant_type_4, double_quant_4, quantized_model_name):
if oauth_token is None :
return "Error : Please Sign In to your HuggingFace account to use the quantizer"
if not profile:
return "Error: Please Sign In to your HuggingFace account to use the quantizer"
exists_message = check_model_exists(oauth_token, profile.username, quantization_type, model_name, quantized_model_name)
if exists_message :
return exists_message
if not is_float(threshold) :
return "Threshold must be a float"
threshold = float(threshold)
try:
quantized_model = quantize_model(model_name, quantization_type, threshold, quant_type_4, double_quant_4, oauth_token, profile.username)
return save_model(quantized_model, model_name, quantization_type, threshold, quant_type_4, double_quant_4, profile.username, oauth_token, quantized_model_name)
except Exception as e :
return f"An error occurred: {str(e)}"
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as app:
gr.Markdown(
"""
# 🤗 LLM Model BitsAndBytes Quantization App
Quantize your favorite Hugging Face models using BitsAndBytes and save them to your profile!
"""
)
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
m1 = gr.Markdown()
app.load(hello, inputs=None, outputs=m1)
radio = gr.Radio(["show", "hide"], label="Show Instructions")
instructions = gr.Markdown(
"""
## Instructions
1. Login to your HuggingFace account
2. Enter the name of the Hugging Face LLM model you want to quantize (Make sure you have access to it)
3. Choose the quantization type.
4. Optionally, specify the group size.
5. Optionally, choose a custom name for the quantized model
6. Click "Quantize and Save Model" to start the process.
7. Once complete, you'll receive a link to the quantized model on Hugging Face.
Note: This process may take some time depending on the model size and your hardware you can check the container logs to see where are you at in the process!
""",
visible=False
)
def update_visibility(radio): # Accept the event argument, even if not used
value = radio # Get the selected value from the radio button
if value == "show":
return gr.Textbox(visible=True) #make it visible
else:
return gr.Textbox(visible=False)
radio.change(update_visibility, radio, instructions)
with gr.Row():
with gr.Column():
with gr.Row():
model_name = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
with gr.Row():
with gr.Column():
quantization_type = gr.Dropdown(
info="Quantization Type",
choices=["int4", "int8"],
value="int8",
filterable=False,
show_label=False,
)
threshold_8 = gr.Textbox(
info="Outlier threshold",
value=6,
interactive=True,
show_label=False,
visible=False
)
quant_type_4 = gr.Dropdown(
info="The quantization data type in the bnb.nn.Linear4Bit layers",
choices=["fp4", "nf4"],
value="fp4",
visible=False,
show_label=False
)
radio_4 = gr.Radio(["False", "True"], label="Use Double Quant", visible=False, value="False")
def update_visibility(quantization_type):
return gr.update(visible=(quantization_type=="int8")), gr.update(visible=(quantization_type=="int4")), gr.update(visible=(quantization_type=="int4"))
quantization_type.change(fn=update_visibility, inputs=quantization_type, outputs=[threshold_8, quant_type_4, radio_4])
quantized_model_name = gr.Textbox(
info="Model Name (optional : to override default)",
value="",
interactive=True,
show_label=False
)
with gr.Column():
quantize_button = gr.Button("Quantize and Save Model", variant="primary")
output_link = gr.Markdown(label="Quantized Model Link", container=True, min_height=40)
# Adding CSS styles for the username box
app.css = """
#username-box {
background-color: #f0f8ff; /* Light color */
border-radius: 8px;
padding: 10px;
}
"""
app.css = """
.center-button {
display: flex;
justify-content: center;
align-items: center;
margin: 0 auto; /* Center horizontally */
}
"""
quantize_button.click(
fn=quantize_and_save,
inputs=[model_name, quantization_type, threshold_8, quant_type_4, radio_4, quantized_model_name],
outputs=[output_link]
)
# Launch the app
app.launch() |