File size: 15,717 Bytes
40d5657
 
 
 
 
 
 
fa23c0d
40d5657
 
 
 
 
 
 
 
fa23c0d
 
40d5657
fa23c0d
40d5657
 
 
 
 
 
 
364af2c
40d5657
 
 
 
 
 
 
 
fa23c0d
40d5657
 
 
 
 
 
 
 
fa23c0d
40d5657
 
fa23c0d
 
 
 
 
40d5657
 
 
 
 
 
 
 
 
 
 
9be6f61
40d5657
fa23c0d
 
 
 
 
 
 
 
40d5657
fa23c0d
 
 
 
 
 
 
 
 
 
364af2c
fa23c0d
 
 
 
40d5657
 
fa23c0d
40d5657
 
 
 
9be6f61
40d5657
 
9be6f61
364af2c
9be6f61
40d5657
fa23c0d
40d5657
 
 
 
fa23c0d
40d5657
 
 
 
 
2eaaab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d5657
fa23c0d
40d5657
4512289
 
 
 
 
 
40d5657
4512289
 
 
 
 
2eaaab3
fa23c0d
40d5657
4512289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d5657
 
 
 
fa23c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f08c0c5
fa23c0d
40d5657
fa23c0d
 
9be6f61
40d5657
 
fa23c0d
40d5657
 
 
 
 
 
 
9be6f61
 
fa23c0d
40d5657
 
 
 
 
fa23c0d
40d5657
 
 
 
fa23c0d
 
 
 
 
40d5657
 
 
 
92eb715
fa23c0d
40d5657
 
fa23c0d
 
 
92eb715
fa23c0d
40d5657
 
fa23c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
92eb715
fa23c0d
 
92eb715
fa23c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92eb715
fa23c0d
 
 
 
40d5657
92eb715
2eaaab3
 
40d5657
 
fa23c0d
40d5657
 
 
9be6f61
 
364af2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, BitsAndBytesConfig
import tempfile
from huggingface_hub import HfApi
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bitsandbytes.nn import Linear4bit
from packaging import version
import os


def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
    # ^ expect a gr.OAuthProfile object as input to get the user's profile
    # if the user is not logged in, profile will be None
    if profile is None:
        return "Hello Please Login to HuggingFace to use the BitsAndBytes Quantizer!"
    return f"Hello {profile.name} ! Welcome to BitsAndBytes Quantizer"

def check_model_exists(oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name):
    """Check if a model exists in the user's Hugging Face repository."""
    try:
        models = list_models(author=username, token=oauth_token.token)
        model_names = [model.id for model in models]
        if quantized_model_name : 
            repo_name = f"{username}/{quantized_model_name}"
        else : 
            repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"

        if repo_name in model_names:
            return f"Model '{repo_name}' already exists in your repository."
        else:
            return None  # Model does not exist
    except Exception as e:
        return f"Error checking model existence: {str(e)}"

def create_model_card(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4):
    model_card = f"""---
base_model:
- {model_name}
---

# {model_name} (Quantized)

## Description
This model is a quantized version of the original model `{model_name}`. It has been quantized using int4 quantization with bitsandbytes.

## Quantization Details
- **Quantization Type**: int4
- **bnb_4bit_quant_type**: {quant_type_4}
- **bnb_4bit_use_double_quant**: {double_quant_4}
- **bnb_4bit_compute_dtype**: {compute_type_4}
- **bnb_4bit_quant_storage**: {quant_storage_4}

## Usage
You can use this model in your applications by loading it directly from the Hugging Face Hub:
```python
from transformers import AutoModel

model = AutoModel.from_pretrained("{model_name}")"""
    
    return model_card

def load_model(model_name, quantization_config, auth_token) : 
    return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)

DTYPE_MAPPING = {
    "int8": torch.int8,
    "uint8": torch.uint8,
    "float16": torch.float16,
    "float32": torch.float32, 
    "bfloat16": torch.bfloat16,
}


def quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token=None):
    print(f"Quantizing model: {quant_type_4}")
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type=quant_type_4,
        bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
        bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
        bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
    )

    model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token, torch_dtype=torch.bfloat16)
    for _ , module in model.named_modules():
        if isinstance(module, Linear4bit):
            module.to("cuda")
            module.to("cpu")
    return model

def save_model(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False):
    print("Saving quantized model")
    with tempfile.TemporaryDirectory() as tmpdirname:


        model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
        if quantized_model_name : 
            repo_name = f"{username}/{quantized_model_name}"
        else :   
            repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"
            

        model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4)
        with open(os.path.join(tmpdirname, "README.md"), "w") as f:
            f.write(model_card)
        # Push to Hub
        api = HfApi(token=auth_token.token)
        api.create_repo(repo_name, exist_ok=True, private=not public)
        api.upload_folder(
            folder_path=tmpdirname,
            repo_id=repo_name,
            repo_type="model",
        )
    # Get model architecture as string
    import io
    from contextlib import redirect_stdout
    import html
    
    # Capture the model architecture string
    f = io.StringIO()
    with redirect_stdout(f):
        print(model)
    model_architecture_str = f.getvalue()
    
    # Escape HTML characters and format with line breaks
    model_architecture_str_html = html.escape(model_architecture_str).replace('\n', '<br/>')
    
    # Format it for display in markdown with proper styling
    model_architecture_info = f"""
    <div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
        <div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
    </div>
    """
    
    return f'πŸ”— Quantized Model <br/><h1> πŸ€— DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a><br/><br/>πŸ“Š Model Architecture<br/>{model_architecture_info}'

def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public):
    if oauth_token is None : 
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    if not profile:
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """ 
    exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name)
    if exists_message : 
        return f"""
        <div class="warning-box">
            <h3>⚠️ Model Already Exists</h3>
            <p>{exists_message}</p>
        </div>
        """
    try:
        quantized_model = quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token)
        return save_model(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public)
    except Exception as e : 
        print(e)
        return f"""
        <div class="error-box">
            <h3>❌ Error Occurred</h3>
            <p>{str(e)}</p>
        </div>
        """


css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}

/* Fix alignment for radio buttons and checkboxes */
.gradio-radio {
    display: flex !important;
    align-items: center !important;
    margin: 10px 0 !important;
}

.gradio-checkbox {
    display: flex !important;
    align-items: center !important;
    margin: 10px 0 !important;
}

/* Ensure consistent spacing and alignment */
.gradio-dropdown, .gradio-textbox, .gradio-radio, .gradio-checkbox {
    margin-bottom: 12px !important;
    width: 100% !important;
}

/* Align radio buttons and checkboxes horizontally */
.option-row {
    display: flex !important;
    justify-content: space-between !important;
    align-items: center !important;
    gap: 20px !important;
    margin-bottom: 12px !important;
}

.option-row .gradio-radio, .option-row .gradio-checkbox {
    margin: 0 !important;
    flex: 1 !important;
}

/* Horizontally align radio button options with text */
.gradio-radio label {
    display: flex !important;
    align-items: center !important;
}

.gradio-radio input[type="radio"] {
    margin-right: 5px !important;
}

/* Remove padding and margin from model name textbox for better alignment */
.model-name-textbox {
    padding-left: 0 !important;
    padding-right: 0 !important;
    margin-left: 0 !important;
    margin-right: 0 !important;
}

/* Quantize button styling with glow effect */
button[variant="primary"] {
    background: linear-gradient(135deg, #3B82F6, #10B981) !important;
    color: white !important;
    padding: 16px 32px !important;
    font-size: 1.1rem !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 12px !important;
    box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
    transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
    position: relative;
    overflow: hidden;
    animation: glow 1.5s ease-in-out infinite alternate;
}

button[variant="primary"]::before {
    content: "✨ ";
}

button[variant="primary"]:hover {
    transform: translateY(-5px) scale(1.05) !important;
    box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
}

@keyframes glow {
    from {
        box-shadow: 0 0 10px rgba(59, 130, 246, 0.5);
    }
    to {
        box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5);
    }
}

/* Login button styling with glow effect */
#login-button {
    background: linear-gradient(135deg, #3B82F6, #10B981) !important;
    color: white !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 12px !important;
    box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
    transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
    position: relative;
    overflow: hidden;
    animation: glow 1.5s ease-in-out infinite alternate;
    max-width: 300px !important;
    margin: 0 auto !important;
}

#login-button::before {
    content: "πŸ”‘ ";
    display: inline-block !important;
    vertical-align: middle !important;
    margin-right: 5px !important;
    line-height: normal !important;
}

#login-button:hover {
    transform: translateY(-3px) scale(1.03) !important;
    box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
}

#login-button::after {
    content: "";
    position: absolute;
    top: 0;
    left: -100%;
    width: 100%;
    height: 100%;
    background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
    transition: 0.5s;
}

#login-button:hover::after {
    left: 100%;
}

/* Toggle instructions button styling */
#toggle-button {
    background: linear-gradient(135deg, #3B82F6, #10B981) !important;
    color: white !important;
    font-size: 0.85rem !important;
    font-weight: 600 !important;
    padding: 8px 16px !important;
    border: none !important;
    border-radius: 8px !important;
    box-shadow: 0 2px 10px rgba(59, 130, 246, 0.3) !important;
    transition: all 0.3s ease !important;
    margin: 0.5rem auto 1.5rem auto !important;
    display: block !important;
    max-width: 200px !important;
    text-align: center !important;
    position: relative;
    overflow: hidden;
}

#toggle-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 4px 12px rgba(59, 130, 246, 0.5) !important;
}

#toggle-button::after {
    content: "";
    position: absolute;
    top: 0;
    left: -100%;
    width: 100%;
    height: 100%;
    background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
    transition: 0.5s;
}

#toggle-button:hover::after {
    left: 100%;
}

"""


with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
    gr.Markdown(
        """
        # πŸ€— LLM Model BitsAndBytes Quantizer ✨
        
        """
    )

    gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)

    m1 = gr.Markdown()
    demo.load(hello, inputs=None, outputs=m1)
    
    instructions_visible = gr.State(False)    

    with gr.Row():
        with gr.Column():
            with gr.Row():
                model_name = HuggingfaceHubSearch(
                    label="πŸ” Hub Model ID",
                    placeholder="Search for model id on Huggingface",
                    search_type="model",
                )
            with gr.Row():
                with gr.Column(): 
                    gr.Markdown(
                        """
                        ### βš™οΈ Model Quantization Type Settings
                        """
                    )
                    quant_type_4 = gr.Dropdown(
                        info="The quantization data type in the bnb.nn.Linear4Bit layers",
                        choices=["fp4", "nf4"],
                        value="nf4",
                        visible=True,
                        show_label=False
                    )
                    compute_type_4 = gr.Dropdown(
                        info="The compute type for the model",
                        choices=["float16", "bfloat16", "float32"],
                        value="bfloat16",
                        visible=True,
                        show_label=False
                    )
                    quant_storage_4 = gr.Dropdown(
                        info="The storage type for the model",
                        choices=["float16", "float32", "int8", "uint8", "bfloat16"],
                        value="uint8",
                        visible=True,
                        show_label=False
                    )
                    gr.Markdown(
                        """
                        ### πŸ”„ Double Quantization Settings
                        """
                    )
                    with gr.Row(elem_classes="option-row"):
                        double_quant_4 = gr.Radio(
                            ["True", "False"], 
                            info="Use Double Quant", 
                            visible=True, 
                            value="True",
                            show_label=False
                        )
                    gr.Markdown(
                        """
                        ### πŸ’Ύ Saving Settings
                        """
                    )
                    with gr.Row():
                        quantized_model_name = gr.Textbox(
                            label="✏️ Model Name",
                            info="Model Name (optional : to override default)",
                            value="",
                            interactive=True,
                            elem_classes="model-name-textbox",
                            show_label=False,
                        )
                    
                    with gr.Row():
                        public = gr.Checkbox(
                            label="🌐 Make model public",
                            info="If checked, the model will be publicly accessible",
                            value=True,
                            interactive=True,
                            show_label=True
                        )

        with gr.Column():
            quantize_button = gr.Button("πŸš€ Quantize and Push to the Hub", variant="primary")
            output_link = gr.Markdown("πŸ”— Quantized Model", container=True, min_height=100)   
            
    quantize_button.click(
        fn=quantize_and_save,
        inputs=[model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public],
        outputs=[output_link]
    )

if __name__ == "__main__":
    demo.launch(share=True)