File size: 24,217 Bytes
fa23c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, BitsAndBytesConfig
import tempfile
from huggingface_hub import HfApi
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bitsandbytes.nn import Linear4bit
from packaging import version
import os


def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
    if profile is None:
        return "πŸ‘‹ Hello! Sign in to get started with the BitsAndBytes Quantizer."
    return f"πŸ‘‹ Hello {profile.name}! Welcome to the BitsAndBytes Quantizer."

def check_model_exists(oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name):
    """Check if a model exists in the user's Hugging Face repository."""
    try:
        models = list_models(author=username, token=oauth_token.token)
        model_names = [model.id for model in models]
        if quantized_model_name : 
            repo_name = f"{username}/{quantized_model_name}"
        else : 
            repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4"

        if repo_name in model_names:
            return f"Model '{repo_name}' already exists in your repository."
        else:
            return None  # Model does not exist
    except Exception as e:
        return f"Error checking model existence: {str(e)}"

def create_model_card(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4):
    model_card = f"""---
base_model:
- {model_name}
---

# {model_name} (Quantized)

## Description
This model is a quantized version of the original model `{model_name}`. It has been quantized using int4 quantization with bitsandbytes.

## Quantization Details
- **Quantization Type**: int4
- **bnb_4bit_quant_type**: {quant_type_4}
- **bnb_4bit_use_double_quant**: {double_quant_4}
- **bnb_4bit_compute_dtype**: {compute_type_4}
- **bnb_4bit_quant_storage**: {quant_storage_4}

## Usage
You can use this model in your applications by loading it directly from the Hugging Face Hub:
```python
from transformers import AutoModel

model = AutoModel.from_pretrained("{model_name}")"""
    
    return model_card

def load_model(model_name, quantization_config, auth_token) : 
    return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)

DTYPE_MAPPING = {
    "int8": torch.int8,
    "uint8": torch.uint8,
    "float16": torch.float16,
    "float32": torch.float32, 
    "bfloat16": torch.bfloat16,
}


def quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token=None):
    print(f"Quantizing model: {quant_type_4}")
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type=quant_type_4,
        bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
        bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
        bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
    )

    model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
    for _ , module in model.named_modules():
        if isinstance(module, Linear4bit):
            module.to("cuda")
            module.to("cpu")
    return model

def save_model(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False):
    print("Saving quantized model")
    with tempfile.TemporaryDirectory() as tmpdirname:
        model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
        if quantized_model_name : 
            repo_name = f"{username}/{quantized_model_name}"
        else :   
            repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4"
            
        model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4)
        with open(os.path.join(tmpdirname, "README.md"), "w") as f:
            f.write(model_card)
        # Push to Hub
        api = HfApi(token=auth_token.token)
        api.create_repo(repo_name, exist_ok=True, private=not public)
        api.upload_folder(
            folder_path=tmpdirname,
            repo_id=repo_name,
            repo_type="model",
        )
    return f"""
    <div class="success-box">
        <h2>πŸŽ‰ Quantization Complete!</h2>
        <p>Your quantized model is now available at:</p>
        <a href="https://huggingface.co/{repo_name}" target="_blank" class="model-link">
            huggingface.co/{repo_name}
        </a>
    </div>
    """

def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public):
    if oauth_token is None : 
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    if not profile:
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name)
    if exists_message : 
        return f"""
        <div class="warning-box">
            <h3>⚠️ Model Already Exists</h3>
            <p>{exists_message}</p>
        </div>
        """
    try:
        quantized_model = quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token)
        return save_model(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public)
    except Exception as e : 
        print(e)
        return f"""
        <div class="error-box">
            <h3>❌ Error Occurred</h3>
            <p>{str(e)}</p>
        </div>
        """

css = """
:root {
    --primary: #6366f1;
    --primary-light: #818cf8;
    --primary-dark: #4f46e5;
    --secondary: #10b981;
    --accent: #f97316;
    --background: #f8fafc;
    --text: #1e293b;
    --card-bg: #ffffff;
    --input-bg: #f1f5f9;
    --error: #ef4444;
    --warning: #f59e0b;
    --success: #10b981;
    --border-radius: 12px;
    --shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
    --transition: all 0.3s ease;
}

body, .gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', sans-serif;
    color: var(--text);
    background-color: var(--background);
}

h1 {
    font-size: 2.5rem !important;
    font-weight: 800 !important;
    text-align: center;
    background: linear-gradient(45deg, var(--primary), var(--accent));
    -webkit-background-clip: text;
    background-clip: text;
    color: transparent !important;
    margin-bottom: 1rem !important;
    padding: 1rem 0 !important;
}

h2 {
    font-size: 1.75rem !important;
    font-weight: 700 !important;
    color: var(--primary-dark) !important;
    margin-top: 1.5rem !important;
    margin-bottom: 1rem !important;
}

h3 {
    font-size: 1.25rem !important;
    font-weight: 600 !important;
    color: var(--primary) !important;
    margin-top: 1rem !important;
    margin-bottom: 0.5rem !important;
    border-bottom: 2px solid var(--primary-light);
    padding-bottom: 0.5rem;
    width: fit-content;
}

/* Main container styling */
.main-container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 2rem;
    background-color: var(--card-bg);
    border-radius: var(--border-radius);
    box-shadow: var(--shadow);
}

/* Button styling */
button {
    border-radius: var(--border-radius) !important;
    font-weight: 600 !important;
    transition: var(--transition) !important;
    text-transform: uppercase;
    letter-spacing: 0.5px;
}

button.primary {
    background: linear-gradient(135deg, var(--primary), var(--primary-dark)) !important;
    border: none !important;
    color: white !important;
    padding: 12px 24px !important;
    box-shadow: 0 4px 6px -1px rgba(99, 102, 241, 0.4) !important;
}

button.primary:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 8px 15px -3px rgba(99, 102, 241, 0.5) !important;
}

/* Login button styling */
#login-button {
    margin: 1.5rem auto !important;
    min-width: 200px !important;
    background: linear-gradient(135deg, var(--primary), var(--primary-dark)) !important;
    color: white !important;
    font-weight: 600 !important;
    padding: 12px 24px !important;
    border-radius: var(--border-radius) !important;
    border: none !important;
    box-shadow: 0 4px 6px -1px rgba(99, 102, 241, 0.4) !important;
    transition: var(--transition) !important;
}

#login-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 8px 15px -3px rgba(99, 102, 241, 0.5) !important;
}

/* Toggle button styling */
#toggle-button {
    background: transparent !important;
    color: var(--primary) !important;
    border: 2px solid var(--primary-light) !important;
    padding: 8px 16px !important;
    margin: 1rem 0 !important;
    border-radius: var(--border-radius) !important;
    transition: var(--transition) !important;
    font-weight: 600 !important;
}

#toggle-button:hover {
    background-color: var(--primary-light) !important;
    color: white !important;
}

/* Input fields styling */
input, select, textarea {
    border-radius: var(--border-radius) !important;
    border: 2px solid var(--input-bg) !important;
    padding: 10px 16px !important;
    background-color: var(--input-bg) !important;
    transition: var(--transition) !important;
}

input:focus, select:focus, textarea:focus {
    border-color: var(--primary-light) !important;
    box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.2) !important;
}

/* Dropdown styling with nice hover effects */
.gradio-dropdown > div {
    border-radius: var(--border-radius) !important;
    border: 2px solid var(--input-bg) !important;
    overflow: hidden !important;
    transition: var(--transition) !important;
}

.gradio-dropdown > div:hover {
    border-color: var(--primary-light) !important;
}

/* Radio and checkbox styling */
.gradio-radio, .gradio-checkbox {
    background-color: var(--card-bg) !important;
    border-radius: var(--border-radius) !important;
    padding: 12px !important;
    margin-bottom: 16px !important;
    transition: var(--transition) !important;
    border: 2px solid var(--input-bg) !important;
}

.gradio-radio:hover, .gradio-checkbox:hover {
    border-color: var(--primary-light) !important;
}

.gradio-radio input[type="radio"] + label {
    padding: 8px 12px !important;
    border-radius: 20px !important;
    margin-right: 8px !important;
    background-color: var(--input-bg) !important;
    transition: var(--transition) !important;
}

.gradio-radio input[type="radio"]:checked + label {
    background-color: var(--primary) !important;
    color: white !important;
}

/* Custom spacing and layout */
.gradio-row {
    margin-bottom: 24px !important;
}

.option-row {
    display: flex !important;
    gap: 16px !important;
    margin-bottom: 16px !important;
}

/* Card-like sections */
.card-section {
    background-color: var(--card-bg) !important;
    border-radius: var(--border-radius) !important;
    padding: 20px !important;
    margin-bottom: 24px !important;
    box-shadow: var(--shadow) !important;
    border: 1px solid rgba(0, 0, 0, 0.05) !important;
}

/* Search box styling */
.search-box input {
    border-radius: var(--border-radius) !important;
    border: 2px solid var(--input-bg) !important;
    padding: 12px 20px !important;
    box-shadow: var(--shadow) !important;
    transition: var(--transition) !important;
}

.search-box input:focus {
    border-color: var(--primary) !important;
    box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.3) !important;
}

/* Model name textbox specific styling */
.model-name-textbox {
    border: 2px solid var(--input-bg) !important;
    border-radius: var(--border-radius) !important;
    transition: var(--transition) !important;
}

.model-name-textbox:focus-within {
    border-color: var(--primary) !important;
    box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.3) !important;
}

/* Success, warning and error boxes */
.success-box, .warning-box, .error-box {
    border-radius: var(--border-radius) !important;
    padding: 20px !important;
    margin: 20px 0 !important;
    box-shadow: var(--shadow) !important;
    animation: fadeIn 0.5s ease-in-out;
}

.success-box {
    background-color: rgba(16, 185, 129, 0.1) !important;
    border: 2px solid var(--success) !important;
}

.warning-box {
    background-color: rgba(245, 158, 11, 0.1) !important;
    border: 2px solid var(--warning) !important;
}

.error-box {
    background-color: rgba(239, 68, 68, 0.1) !important;
    border: 2px solid var(--error) !important;
}

/* Model link styling */
.model-link {
    display: inline-block !important;
    background: linear-gradient(135deg, var(--primary), var(--primary-dark)) !important;
    color: white !important;
    text-decoration: none !important;
    padding: 12px 24px !important;
    border-radius: var(--border-radius) !important;
    font-weight: 600 !important;
    margin-top: 16px !important;
    box-shadow: 0 4px 6px -1px rgba(99, 102, 241, 0.4) !important;
    transition: var(--transition) !important;
}

.model-link:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 8px 15px -3px rgba(99, 102, 241, 0.5) !important;
}

/* Instructions section */
.instructions-container {
    background-color: rgba(99, 102, 241, 0.05) !important;
    border-left: 4px solid var(--primary) !important;
    padding: 16px !important;
    margin: 24px 0 !important;
    border-radius: 0 var(--border-radius) var(--border-radius) 0 !important;
}

/* Animations */
@keyframes fadeIn {
    from { opacity: 0; transform: translateY(10px); }
    to { opacity: 1; transform: translateY(0); }
}

/* Responsive adjustments */
@media (max-width: 768px) {
    .option-row {
        flex-direction: column !important;
    }
}

/* Add a nice gradient splash to the app */
.gradio-container::before {
    content: "";
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    height: 10px;
    background: linear-gradient(90deg, var(--primary), var(--accent));
    z-index: 100;
}

/* Stylish header */
.app-header {
    display: flex;
    flex-direction: column;
    align-items: center;
    margin-bottom: 2rem;
    position: relative;
}

.app-header::after {
    content: "";
    position: absolute;
    bottom: -10px;
    left: 50%;
    transform: translateX(-50%);
    width: 80px;
    height: 4px;
    background: linear-gradient(90deg, var(--primary), var(--accent));
    border-radius: 2px;
}

/* Section headers */
.section-header {
    display: flex;
    align-items: center;
    margin-bottom: 1rem;
}

.section-header::before {
    content: "βš™οΈ";
    margin-right: 8px;
    font-size: 1.25rem;
}

/* Quantize button special styling */
#quantize-button {
    background: linear-gradient(135deg, var(--primary), var(--accent)) !important;
    color: white !important;
    padding: 16px 32px !important;
    font-size: 1.1rem !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: var(--border-radius) !important;
    box-shadow: 0 4px 15px -3px rgba(99, 102, 241, 0.5) !important;
    transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
    position: relative;
    overflow: hidden;
}

#quantize-button:hover {
    transform: translateY(-3px) !important;
    box-shadow: 0 7px 20px -2px rgba(99, 102, 241, 0.6) !important;
}

#quantize-button::after {
    content: "";
    position: absolute;
    top: 0;
    left: 0;
    width: 100%;
    height: 100%;
    background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 0));
    transform: translateY(-100%);
    transition: transform 0.6s cubic-bezier(0.25, 0.8, 0.25, 1);
}

#quantize-button:hover::after {
    transform: translateY(0);
}
"""

with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald"), css=css) as demo:
    with gr.Column(elem_classes="main-container"):
        with gr.Row(elem_classes="app-header"):
            gr.Markdown(
                """
                <h1 style="text-align: center; margin-bottom: 1rem; font-size: 1.2rem; color: #4b5563;"> πŸ€— BitsAndBytes Model Quantizer</h1>
                
                <div style="text-align: center; margin-bottom: 1rem; font-size: 1.2rem; color: #4b5563;">
                 Welcome to the BitsAndBytes Model Quantizer!
                </div>
                """
            )

        gr.LoginButton(elem_id="login-button", elem_classes="login-button")

        welcome_msg = gr.Markdown(elem_classes="welcome-message")
        demo.load(hello, inputs=None, outputs=welcome_msg)

        instructions = gr.Markdown(
            """
            <div class="instructions-container">
                <h3>πŸ“‹ Instructions</h3>
                <ol>
                    <li>Login to your HuggingFace account</li>
                    <li>Enter the name of the Hugging Face LLM model you want to quantize</li>
                    <li>Configure quantization settings based on your needs</li>
                    <li>Optionally, specify a custom name for the quantized model</li>
                    <li>Click "Quantize Model" to start the process</li>
                </ol>
                <p><strong>Note:</strong> Processing time depends on model size and your hardware. Check container logs for progress!</p>
            </div>
            """,
            visible=False
        )
        
        instructions_visible = gr.State(False)
        toggle_button = gr.Button("β–Ό Show Instructions", elem_id="toggle-button", elem_classes="toggle-button")
        
        def toggle_instructions(instructions_visible):
            new_visibility = not instructions_visible
            new_label = "β–² Hide Instructions" if new_visibility else "β–Ό Show Instructions"
            return gr.update(visible=new_visibility), new_visibility, gr.update(value=new_label)
        
        toggle_button.click(toggle_instructions, instructions_visible, [instructions, instructions_visible, toggle_button])

        with gr.Row(elem_classes="app-content"):
            with gr.Column(scale=1, elem_classes="card-section"):
                with gr.Row(elem_classes="search-section"):
                    model_name = HuggingfaceHubSearch(
                        label="πŸ” Select Model",
                        placeholder="  Search for model on Huggingface Hub...",
                        search_type="model",
                        elem_classes="search-box"
                    )
                
                with gr.Row(elem_classes="section-header"):
                    gr.Markdown("### Quantization Settings")
                
                with gr.Column(elem_classes="settings-group"):
                    gr.Markdown("**Quantization Type**", elem_classes="setting-label")
                    quant_type_4 = gr.Dropdown(
                        choices=["fp4", "nf4"],
                        value="fp4",
                        label="Format",
                        info="The quantization data type in bnb.nn.Linear4Bit layers",
                        show_label=False
                    )
                    
                    gr.Markdown("**Compute Settings**", elem_classes="setting-label")
                    compute_type_4 = gr.Dropdown(
                        choices=["float16", "bfloat16", "float32"],
                        value="float32",
                        label="Compute Type",
                        info="The compute dtype for matrix multiplication"
                    )
                    
                    quant_storage_4 = gr.Dropdown(
                        choices=["float16", "float32", "int8", "uint8", "bfloat16"],
                        value="uint8",
                        label="Storage Type",
                        info="The storage type for quantized weights"
                    )
                    
                    gr.Markdown("**Double Quantization**", elem_classes="setting-label")
                    double_quant_4 = gr.Radio(
                        ["False", "True"], 
                        label="Use Double Quantization",
                        info="Further compress model size with nested quantization", 
                        value="False",
                    )
                
                with gr.Row(elem_classes="section-header"):
                    gr.Markdown("### Output Settings")
                
                with gr.Column(elem_classes="settings-group"):
                    quantized_model_name = gr.Textbox(
                        label="Custom Model Name (Optional)",
                        info="Leave blank to use default naming convention",
                        placeholder="my-quantized-model",
                        elem_classes="model-name-textbox"
                    )
                    
                    public = gr.Checkbox(
                        label="Make model public",
                        info="If checked, your model will be publicly accessible on Hugging Face Hub",
                        value=False,
                    )
            
            with gr.Column(scale=1, elem_classes="card-section"):
                with gr.Row():
                    gr.Markdown("""
                    ### πŸ“Š Quantization Benefits
                    
                    <div style="background-color: rgba(99, 102, 241, 0.05); padding: 12px; border-radius: 8px; margin-bottom: 16px;">
                        <p><strong>⚑ Lower Memory Usage:</strong> Reduce model size by up to 75%</p>
                        <p><strong>πŸš€ Faster Inference:</strong> Achieve better performance on resource-constrained hardware</p>
                        <p><strong>πŸ’» Wider Compatibility:</strong> Run models on devices with limited VRAM</p>
                    </div>
                    
                    ### πŸ”§ Configuration Guide
                    
                    <div style="background-color: rgba(16, 185, 129, 0.05); padding: 12px; border-radius: 8px;">
                        <p><strong>Quantization Type:</strong></p>
                        <ul>
                            <li><code>fp4</code> - 4-bit floating point (better for most cases)</li>
                            <li><code>nf4</code> - normalized float format (better for specific models)</li>
                        </ul>
                        <p><strong>Double Quantization:</strong> Enable for additional compression with minimal quality loss</p>
                    </div>
                    """)
                
                with gr.Row():
                    quantize_button = gr.Button("πŸš€ Quantize Model", variant="primary", elem_id="quantize-button")
                
                output_link = gr.HTML(label="Results", elem_classes="results-container")

        # Add interactive footer with links
        gr.Markdown("""
        <div style="margin-top: 2rem; text-align: center; padding: 1rem; border-top: 1px solid rgba(99, 102, 241, 0.2);">
            <p>Powered by <a href="https://huggingface.co/" target="_blank" style="color: var(--primary); text-decoration: none; font-weight: 600;">Hugging Face</a> and <a href="https://github.com/TimDettmers/bitsandbytes" target="_blank" style="color: var(--primary); text-decoration: none; font-weight: 600;">BitsAndBytes</a></p>
        </div>
        """)
    
    quantize_button.click(
        fn=quantize_and_save,
        inputs=[model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public],
        outputs=[output_link]
    )

if __name__ == "__main__":
    demo.launch(share=True)