File size: 4,654 Bytes
de2d4cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
<script lang="ts">
  import Prompt from "$lib/components/Prompt.svelte";
	import SelectModel from "$lib/components/SelectModel.svelte";
  import Input from "$lib/components/Input.svelte";
  import Toggle from "$lib/components/Toggle.svelte";
	import { TEXT_GENERATIONS } from "$lib/utils/models";

  export let form: Record<string, any>;
  export let onForm: (form: Record<string, any>) => void;
</script>

<SelectModel value={form.model} items={TEXT_GENERATIONS} onChange={(model) => onForm({ ...form, model })} />
<Prompt
  value={form.inputs}
  onChange={(inputs) => onForm({ ...form, inputs })}
/>
<div class="flex items-center justify-start gap-4 mt-3">
  <p class="text-slate-500 uppercase font-medium text-sm">
    Optional parameters
  </p>
  <div class="w-full flex-1 h-[1px] bg-slate-600" />
</div>
<div class="grid grid-cols-2 gap-x-10 gap-y-6">
  <div class="flex flex-col gap-3">
    <Toggle
      label="Do Sample"
      tooltip="If set to False (the default), the generation method will be greedy search, which selects the most probable continuation sequence after the prompt you provide. Greedy search is deterministic, so the same results will always be returned from the same input. When do_sample is True, tokens will be sampled from a probability distribution and will therefore vary across invocations."
      checked={form?.parameters?.do_sample}
      onChange={(do_sample) =>
        onForm({
          ...form,
          parameters: { ...form.parameters, do_sample },
        })
      }
    />
    <Input
      label="Max new tokens"
      type="number"
      tooltip="Whether to include the input sequence in the output returned by the endpoint. The default used by InferenceClient is False, but the endpoint itself uses True by default."
      min={1}
      max={244}
      sanitize={(value) => {
        const valueAsNumber = Number(value);
        if (valueAsNumber < 1) return 1;
        if (valueAsNumber > 244) return 244;
        return valueAsNumber;
      }}
      value={form?.parameters?.max_new_tokens}
      onChange={(max_new_tokens) =>
        onForm({
          ...form,
          parameters: { ...form.parameters, max_new_tokens },
        })
      }
    />
    <Input
      label="Temperature"
      type="number"
      tooltip="Controls the amount of variation we desire from the generation. A temperature of 0 is equivalent to greedy search. If we set a value for temperature, then do_sample will automatically be enabled. The same thing happens for top_k and top_p. When doing code-related tasks, we want less variability and hence recommend a low temperature. For other tasks, such as open-ended text generation, we recommend a higher one."
      min={0}
      max={1}
      sanitize={(value) => {
        const valueAsNumber = Number(value);
        if (valueAsNumber > 1) return 1;
        if (valueAsNumber < 0) return 0;
        return valueAsNumber;
      }}
      value={form?.parameters?.temperature}
      onChange={(temperature) =>
        onForm({
          ...form,
          parameters: { ...form.parameters, temperature },
        })
      }
    />
  </div>
  <div class="flex flex-col gap-3">
    <Toggle
      label="Return full Text"
      tooltip="Whether to include the input sequence in the output returned by the endpoint. The default used by InferenceClient is False, but the endpoint itself uses True by default."
      checked={form?.parameters?.return_full_text}
      onChange={(return_full_text) =>
        onForm({
          ...form,
          parameters: { ...form.parameters, return_full_text },
        })
      }
    />
    <Input
      label="Top K"
      type="number"
      tooltip={`Enables "Top-K" sampling: the model will choose from the K most probable tokens that may occur after the input sequence. Typical values are between 10 to 50.`}
      min={10}
      max={50}
      sanitize={(value) => {
        const valueAsNumber = Number(value);
        if (valueAsNumber < 10) return 10;
        if (valueAsNumber > 50) return 50;
        return valueAsNumber;
      }}
      value={form?.parameters?.top_k}
      onChange={(top_k) =>
        onForm({
          ...form,
          parameters: { ...form.parameters, top_k },
        })
      }
    />
    <Input
      label="Stop sequences"
      tooltip="A list of sequences that will cause generation to stop when encountered in the output."
      subLabel="Separate each sequence with a comma"
      value={form?.parameters?.stop_sequences}
      onChange={(stop_sequences) =>
        onForm({
          ...form,
          parameters: { ...form.parameters, stop_sequences },
        })
      }
    />
  </div>
</div>