Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,104 Bytes
943290c 0ea1315 943290c 0ea1315 4c411cd 0ea1315 efcf731 0ea1315 4c411cd 0ea1315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import spaces
import gradio as gr
import torch
import soundfile as sf
from transformers import AutoTokenizer, AutoModelForCausalLM
from xcodec2.modeling_xcodec2 import XCodec2Model
import tempfile
device = "cuda" if torch.cuda.is_available() else "cpu"
####################
# 全局加载模型
####################
llasa_3b = "HKUSTAudio/Llasa-1B-two-speakers-kore-puck"
print("Loading tokenizer & model ...")
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
model.eval().to(device)
print("Loading XCodec2Model ...")
codec_model_path = "HKUSTAudio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(codec_model_path)
Codec_model.eval().to(device)
print("Models loaded.")
####################
# 推理用函数
####################
def extract_speech_ids(speech_tokens_str):
"""
将类似 <|s_23456|> 还原为 int 23456
"""
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith("<|s_") and token_str.endswith("|>"):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@spaces.GPU
def text2speech(input_text, speaker_choice):
"""
将文本转为语音波形,并返回音频文件路径
"""
with torch.no_grad():
# 在输入文本前后拼接提示token
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": f"Speaker {speaker_choice} <|SPEECH_GENERATION_START|>"}
]
# tokenizer.apply_chat_template 是 Llasa 风格的对话模式
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
).to(device)
# 结束符
speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>")
# 文本生成
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=0.95, # Adjusts the diversity of generated content
temperature=0.9, # Controls randomness in output
repetition_penalty= 1.2,
)
# 把新生成的 token(不包括输入部分)取出来
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# 将 <|s_23456|> 提取成 [23456 ...]
speech_tokens_int = extract_speech_ids(speech_tokens_str)
speech_tokens_int = torch.tensor(speech_tokens_int).to(device).unsqueeze(0).unsqueeze(0)
# 调用 XCodec2Model 解码波形
gen_wav = Codec_model.decode_code(speech_tokens_int) # [batch, channels, samples]
# 获取音频数据和采样率
audio = gen_wav[0, 0, :].cpu().numpy()
sample_rate = 16000
# 将音频保存到临时文件
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
sf.write(tmpfile.name, audio, sample_rate)
audio_path = tmpfile.name
return audio_path
####################
# Gradio 界面
####################
speaker_choices = ["puck", "kore"]
demo = gr.Interface(
fn=text2speech,
inputs=[gr.Textbox(label="Enter text", lines=5),
gr.Dropdown(choices=speaker_choices, label="Select Speaker", value="puck")],
outputs=gr.Audio(label="Generated Audio", type="filepath"),
title="Llasa-1B TTS finetuned using shb777/gemini-flash-2.0-speech",
description="Input a piece of text in English, select a speaker (puck or kore), and click to generate speech.\nModel: HKUSTAudio/Llasa-1B-two-speakers-kore-puck + HKUSTAudio/xcodec2"
)
if __name__ == "__main__":
demo.launch(
share=True )
|