Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
import soundfile as sf | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from xcodec2.modeling_xcodec2 import XCodec2Model | |
import tempfile | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#################### | |
# 全局加载模型 | |
#################### | |
llasa_3b = "HKUSTAudio/Llasa-1B-two-speakers-kore-puck" | |
print("Loading tokenizer & model ...") | |
tokenizer = AutoTokenizer.from_pretrained(llasa_3b) | |
model = AutoModelForCausalLM.from_pretrained(llasa_3b) | |
model.eval().to(device) | |
print("Loading XCodec2Model ...") | |
codec_model_path = "HKUSTAudio/xcodec2" | |
Codec_model = XCodec2Model.from_pretrained(codec_model_path) | |
Codec_model.eval().to(device) | |
print("Models loaded.") | |
#################### | |
# 推理用函数 | |
#################### | |
def extract_speech_ids(speech_tokens_str): | |
""" | |
将类似 <|s_23456|> 还原为 int 23456 | |
""" | |
speech_ids = [] | |
for token_str in speech_tokens_str: | |
if token_str.startswith("<|s_") and token_str.endswith("|>"): | |
num_str = token_str[4:-2] | |
num = int(num_str) | |
speech_ids.append(num) | |
else: | |
print(f"Unexpected token: {token_str}") | |
return speech_ids | |
def text2speech(input_text, speaker_choice): | |
""" | |
将文本转为语音波形,并返回音频文件路径 | |
""" | |
with torch.no_grad(): | |
# 在输入文本前后拼接提示token | |
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>" | |
chat = [ | |
{"role": "user", "content": "Convert the text to speech:" + formatted_text}, | |
{"role": "assistant", "content": f"Speaker {speaker_choice} <|SPEECH_GENERATION_START|>"} | |
] | |
# tokenizer.apply_chat_template 是 Llasa 风格的对话模式 | |
input_ids = tokenizer.apply_chat_template( | |
chat, | |
tokenize=True, | |
return_tensors='pt', | |
continue_final_message=True | |
).to(device) | |
# 结束符 | |
speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>") | |
# 文本生成 | |
outputs = model.generate( | |
input_ids, | |
max_length=2048, # We trained our model with a max length of 2048 | |
eos_token_id= speech_end_id , | |
do_sample=True, | |
top_p=0.95, # Adjusts the diversity of generated content | |
temperature=0.9, # Controls randomness in output | |
repetition_penalty= 1.2, | |
) | |
# 把新生成的 token(不包括输入部分)取出来 | |
generated_ids = outputs[0][input_ids.shape[1]:-1] | |
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
# 将 <|s_23456|> 提取成 [23456 ...] | |
speech_tokens_int = extract_speech_ids(speech_tokens_str) | |
speech_tokens_int = torch.tensor(speech_tokens_int).to(device).unsqueeze(0).unsqueeze(0) | |
# 调用 XCodec2Model 解码波形 | |
gen_wav = Codec_model.decode_code(speech_tokens_int) # [batch, channels, samples] | |
# 获取音频数据和采样率 | |
audio = gen_wav[0, 0, :].cpu().numpy() | |
sample_rate = 16000 | |
# 将音频保存到临时文件 | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile: | |
sf.write(tmpfile.name, audio, sample_rate) | |
audio_path = tmpfile.name | |
return audio_path | |
#################### | |
# Gradio 界面 | |
#################### | |
speaker_choices = ["puck", "kore"] | |
demo = gr.Interface( | |
fn=text2speech, | |
inputs=[gr.Textbox(label="Enter text", lines=5), | |
gr.Dropdown(choices=speaker_choices, label="Select Speaker", value="puck")], | |
outputs=gr.Audio(label="Generated Audio", type="filepath"), | |
title="Llasa-1B TTS finetuned using shb777/gemini-flash-2.0-speech", | |
description="Input a piece of text in English, select a speaker (puck or kore), and click to generate speech.\nModel: HKUSTAudio/Llasa-1B-two-speakers-kore-puck + HKUSTAudio/xcodec2" | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
share=True ) | |