Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
####################
|
11 |
+
# 全局加载模型
|
12 |
+
####################
|
13 |
+
llasa_3b = "HKUSTAudio/Llasa-1B-two-speakers-kore-puck"
|
14 |
+
print("Loading tokenizer & model ...")
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
|
17 |
+
model.eval().to(device)
|
18 |
+
|
19 |
+
print("Loading XCodec2Model ...")
|
20 |
+
codec_model_path = "HKUSTAudio/xcodec2"
|
21 |
+
Codec_model = XCodec2Model.from_pretrained(codec_model_path)
|
22 |
+
Codec_model.eval().to(device)
|
23 |
+
|
24 |
+
print("Models loaded.")
|
25 |
+
|
26 |
+
####################
|
27 |
+
# 推理用函数
|
28 |
+
####################
|
29 |
+
def extract_speech_ids(speech_tokens_str):
|
30 |
+
"""
|
31 |
+
将类似 <|s_23456|> 还原为 int 23456
|
32 |
+
"""
|
33 |
+
speech_ids = []
|
34 |
+
for token_str in speech_tokens_str:
|
35 |
+
if token_str.startswith("<|s_") and token_str.endswith("|>"):
|
36 |
+
num_str = token_str[4:-2]
|
37 |
+
num = int(num_str)
|
38 |
+
speech_ids.append(num)
|
39 |
+
else:
|
40 |
+
print(f"Unexpected token: {token_str}")
|
41 |
+
return speech_ids
|
42 |
+
|
43 |
+
def text2speech(input_text, speaker_choice):
|
44 |
+
"""
|
45 |
+
将文本转为语音波形,并返回音频文件路径
|
46 |
+
"""
|
47 |
+
with torch.no_grad():
|
48 |
+
# 在输入文本前后拼接提示token
|
49 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
50 |
+
chat = [
|
51 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
52 |
+
{"role": "assistant", "content": f"Speaker {speaker_choice} <|SPEECH_GENERATION_START|>"}
|
53 |
+
]
|
54 |
+
|
55 |
+
# tokenizer.apply_chat_template 是 Llasa 风格的对话模式
|
56 |
+
input_ids = tokenizer.apply_chat_template(
|
57 |
+
chat,
|
58 |
+
tokenize=True,
|
59 |
+
return_tensors='pt',
|
60 |
+
continue_final_message=True
|
61 |
+
).to(device)
|
62 |
+
|
63 |
+
# 结束符
|
64 |
+
speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>")
|
65 |
+
|
66 |
+
# 文本生成
|
67 |
+
outputs = model.generate(
|
68 |
+
input_ids,
|
69 |
+
max_length=2048,
|
70 |
+
eos_token_id=speech_end_id,
|
71 |
+
do_sample=True,
|
72 |
+
top_p=1,
|
73 |
+
temperature=0.8,
|
74 |
+
)
|
75 |
+
|
76 |
+
# 把新生成的 token(不包括输入部分)取出来
|
77 |
+
generated_ids = outputs[0][input_ids.shape[1]:-1]
|
78 |
+
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
79 |
+
|
80 |
+
# 将 <|s_23456|> 提取成 [23456 ...]
|
81 |
+
speech_tokens_int = extract_speech_ids(speech_tokens_str)
|
82 |
+
speech_tokens_int = torch.tensor(speech_tokens_int).to(device).unsqueeze(0).unsqueeze(0)
|
83 |
+
|
84 |
+
# 调用 XCodec2Model 解码波形
|
85 |
+
gen_wav = Codec_model.decode_code(speech_tokens_int) # [batch, channels, samples]
|
86 |
+
|
87 |
+
# 获取音频数据和采样率
|
88 |
+
audio = gen_wav[0, 0, :].cpu().numpy()
|
89 |
+
sample_rate = 16000
|
90 |
+
|
91 |
+
# 将音频保存到临时文件
|
92 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
93 |
+
sf.write(tmpfile.name, audio, sample_rate)
|
94 |
+
audio_path = tmpfile.name
|
95 |
+
|
96 |
+
return audio_path
|
97 |
+
|
98 |
+
####################
|
99 |
+
# Gradio 界面
|
100 |
+
####################
|
101 |
+
speaker_choices = ["puck", "kore"]
|
102 |
+
|
103 |
+
demo = gr.Interface(
|
104 |
+
fn=text2speech,
|
105 |
+
inputs=[gr.Textbox(label="Enter text", lines=5),
|
106 |
+
gr.Dropdown(choices=speaker_choices, label="Select Speaker", value="puck")],
|
107 |
+
outputs=gr.Audio(label="Generated Audio", type="filepath"),
|
108 |
+
title="Llasa-1B TTS Demo",
|
109 |
+
description="Input a piece of text in English or Chinese, select a speaker (puck or kore), and click to generate speech.\nModel: HKUST-Audio/Llasa-1B + HKUST-Audio/xcodec2"
|
110 |
+
)
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
demo.launch(
|
114 |
+
share=True )
|