File size: 11,761 Bytes
34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 8500fc9 34b9ee4 1cd9fb5 34b9ee4 e3efb39 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 8500fc9 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 8500fc9 34b9ee4 1cd9fb5 bf97d3e 1cd9fb5 bf97d3e 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 1cd9fb5 34b9ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from skimage.feature import graycomatrix, graycoprops
from torchvision import transforms
import os
NUM_ROUNDS = 10
PROB_THRESHOLD = 0.3
# Load the model
model = torch.jit.load("SuSy.pt")
def process_image(image):
# Set Parameters
top_k_patches = 5
patch_size = 224
# Get the image dimensions
width, height = image.size
# Calculate the number of patches
num_patches_x = width // patch_size
num_patches_y = height // patch_size
# Divide the image in patches
patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8)
for i in range(num_patches_x):
for j in range(num_patches_y):
x = i * patch_size
y = j * patch_size
patch = image.crop((x, y, x + patch_size, y + patch_size))
patches[i * num_patches_y + j] = np.array(patch)
# Compute the most relevant patches
dissimilarity_scores = []
for patch in patches:
transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0)
glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True)
dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0])
# Sort patch indices by their dissimilarity score
sorted_indices = np.argsort(dissimilarity_scores)[::-1]
# Extract top k patches and convert them to tensor
top_patches = patches[sorted_indices[:top_k_patches]]
top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0
# Predict patches
model.eval()
with torch.no_grad():
preds = model(top_patches)
# Process results
classes = ['Authentic', 'DALL·E 3', 'Stable Diffusion 1.x', 'MJ V5/V6', 'MJ V1/V2', 'Stable Diffusion XL']
mean_probs = preds.mean(dim=0).numpy()
# Create a dictionary of class probabilities
class_probs = {cls: prob for cls, prob in zip(classes, mean_probs)}
# Sort probabilities in descending order
sorted_probs = dict(sorted(class_probs.items(), key=lambda item: item[1], reverse=True))
return sorted_probs
def resize_image(image, max_size=512):
"""Resize image to have a maximum dimension of max_size while preserving aspect ratio"""
width, height = image.size
if width > height:
if width > max_size:
new_width = max_size
new_height = int(height * (max_size / width))
else:
if height > max_size:
new_height = max_size
new_width = int(width * (max_size / height))
else:
return image
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
class GameState:
def __init__(self):
self.user_score = 0
self.model_score = 0
self.current_round = 0
self.total_rounds = NUM_ROUNDS
self.game_images = []
self.is_game_active = False
self.last_results = None
self.waiting_for_input = True
self.original_image = None
def reset(self):
self.__init__()
game_state = GameState()
def load_images():
real_image_folder = "real_images"
fake_image_folder = "fake_images"
real_images = [os.path.join(real_image_folder, img) for img in os.listdir(real_image_folder)]
fake_images = [os.path.join(fake_image_folder, img) for img in os.listdir(fake_image_folder)]
selected_images = random.sample(real_images, NUM_ROUNDS // 2) + random.sample(fake_images, NUM_ROUNDS // 2)
random.shuffle(selected_images)
return selected_images
def create_score_html():
results_html = ""
if game_state.last_results:
results_html = f"""
<div style='margin-top: 1rem; padding: 1rem; background-color: #e0e0e0; border-radius: 8px; color: #333;'>
<h4 style='color: #333; margin-bottom: 0.5rem;'>Last Round Results:</h4>
<p style='color: #333;'>Your guess: {game_state.last_results['user_guess']}</p>
<p style='color: #333;'>Model's guess: {game_state.last_results['model_guess']}</p>
<p style='color: #333;'>Correct answer: {game_state.last_results['correct_answer']}</p>
</div>
"""
current_display_round = min(game_state.current_round + 1, game_state.total_rounds)
return f"""
<div style='padding: 1rem; background-color: #f0f0f0; border-radius: 8px; color: #333;'>
<h3 style='margin-bottom: 1rem; color: #333;'>Score Board</h3>
<div style='display: flex; justify-content: space-around;'>
<div>
<h4 style='color: #333;'>You</h4>
<p style='font-size: 1.5rem; color: #333;'>{game_state.user_score}</p>
</div>
<div>
<h4 style='color: #333;'>AI Model</h4>
<p style='font-size: 1.5rem; color: #333;'>{game_state.model_score}</p>
</div>
</div>
<div style='margin-top: 1rem;'>
<p style='color: #333;'>Round: {current_display_round}/{game_state.total_rounds}</p>
</div>
{results_html}
</div>
"""
def start_game():
game_state.reset()
game_state.game_images = load_images()
game_state.is_game_active = True
game_state.waiting_for_input = True
# Store original image and create resized version for display
game_state.original_image = Image.open(game_state.game_images[0])
display_image = resize_image(game_state.original_image)
return (
gr.update(value=display_image, visible=True), # Show resized image
gr.update(visible=False), # Hide start button
gr.update(visible=True, interactive=True), # Show Real button
gr.update(visible=True, interactive=True), # Show Fake button
create_score_html(),
gr.update(visible=False) # Hide feedback
)
def submit_guess(user_guess):
if not game_state.is_game_active or not game_state.waiting_for_input:
return [gr.update()] * 6
model_prediction = process_image(game_state.original_image)
correct_answer = "Real" if "real_images" in game_state.game_images[game_state.current_round] else "Fake"
# Determine model's guess based on probabilities
model_guess = "Real" if model_prediction['Authentic'] > PROB_THRESHOLD else "Fake"
# Update scores
if user_guess == correct_answer:
game_state.user_score += 1
if model_guess == correct_answer:
game_state.model_score += 1
# Store last results for display
game_state.last_results = {
'user_guess': user_guess,
'model_guess': model_guess,
'correct_answer': correct_answer
}
game_state.current_round += 1
game_state.waiting_for_input = True
# Check if game is over
if game_state.current_round >= game_state.total_rounds:
game_state.is_game_active = False
return (
gr.update(value=None, visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
create_score_html(),
gr.update(visible=True, value="<div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>Game Over! Click 'Start New Game' to play again.</div>")
)
# Continue to next round
game_state.original_image = Image.open(game_state.game_images[game_state.current_round])
display_image = resize_image(game_state.original_image)
return (
gr.update(value=display_image, visible=True),
gr.update(visible=False),
gr.update(visible=True, interactive=True),
gr.update(visible=True, interactive=True),
create_score_html(),
gr.update(visible=False)
)
# Custom CSS
custom_css = """
#game-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
#start-button {
max-width: 200px;
margin: 0 auto;
}
#guess-buttons {
display: flex;
gap: 10px;
justify-content: center;
margin-top: 20px;
}
.guess-button {
min-width: 120px;
}
"""
# Define Gradio interface
with gr.Blocks(css=custom_css) as iface:
with gr.Column(elem_id="game-container"):
gr.HTML("""
<table style="border-collapse: collapse; border: none; padding: 20px;">
<tr style="border: none;">
<td style="border: none; vertical-align: top; padding-right: 30px; padding-left: 30px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/62f7a16192950415b637e201/NobqlpFbFkTyBi1LsT9JE.png" alt="SuSy Logo" width="120" style="margin-bottom: 10px;">
</td>
<td style="border: none; vertical-align: top; padding: 10px;">
<p style="margin-bottom: 15px;">Compete against SuSy to spot AI-Generated images! SuSy can distinguish between authentic images and those generated by DALL·E, Midjourney and Stable Diffusion.</p>
<p style="margin-top: 15px;">Learn more about SuSy: <a href="https://arxiv.org/abs/2409.14128">Present and Future Generalization of Synthetic Image Detectors</a></p>
<p style="margin-top: 15px;">
Enter the SuSy-verse!
<a href="https://huggingface.co/HPAI-BSC/SuSy">Model</a> |
<a href="https://github.com/HPAI-BSC/SuSy">Code</a> |
<a href="https://huggingface.co/datasets/HPAI-BSC/SuSy-Dataset">Dataset</a>
</p>
</td>
</tr>
</table>
""")
with gr.Row():
with gr.Column(scale=2):
image_display = gr.Image(
type="pil",
label="Current Image",
interactive=False,
visible=False
)
with gr.Row(elem_id="guess-buttons"):
real_button = gr.Button(
"Real",
visible=False,
variant="primary",
elem_classes=["guess-button"]
)
fake_button = gr.Button(
"Fake",
visible=False,
variant="primary",
elem_classes=["guess-button"]
)
with gr.Column(scale=1):
score_display = gr.HTML()
with gr.Row():
with gr.Column(elem_id="start-button"):
start_button = gr.Button("Start New Game", variant="primary", size="sm")
feedback_display = gr.Markdown(visible=False)
# Event handlers
start_button.click(
fn=start_game,
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
real_button.click(
fn=lambda: submit_guess("Real"),
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
fake_button.click(
fn=lambda: submit_guess("Fake"),
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
# Launch the interface
iface.launch()
|