SuSyGame / app.py
pabberpe's picture
Move image resizing to frontend
55943e1
raw
history blame
12.1 kB
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from skimage.feature import graycomatrix, graycoprops
from torchvision import transforms
import os
NUM_ROUNDS = 10
PROB_THRESHOLD = 0.3
# Load the model
model = torch.jit.load("SuSy.pt")
def process_image(image):
# Set Parameters
top_k_patches = 5
patch_size = 224
# Get the image dimensions
width, height = image.size
# Calculate the number of patches
num_patches_x = width // patch_size
num_patches_y = height // patch_size
# Divide the image in patches
patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8)
for i in range(num_patches_x):
for j in range(num_patches_y):
x = i * patch_size
y = j * patch_size
patch = image.crop((x, y, x + patch_size, y + patch_size))
patches[i * num_patches_y + j] = np.array(patch)
# Compute the most relevant patches
dissimilarity_scores = []
for patch in patches:
transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0)
glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True)
dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0])
# Sort patch indices by their dissimilarity score
sorted_indices = np.argsort(dissimilarity_scores)[::-1]
# Extract top k patches and convert them to tensor
top_patches = patches[sorted_indices[:top_k_patches]]
top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0
# Predict patches
model.eval()
with torch.no_grad():
preds = model(top_patches)
# Process results
classes = ['Authentic', 'DALL·E 3', 'Stable Diffusion 1.x', 'MJ V5/V6', 'MJ V1/V2', 'Stable Diffusion XL']
mean_probs = preds.mean(dim=0).numpy()
# Create a dictionary of class probabilities
class_probs = {cls: prob for cls, prob in zip(classes, mean_probs)}
# Sort probabilities in descending order
sorted_probs = dict(sorted(class_probs.items(), key=lambda item: item[1], reverse=True))
return sorted_probs
class GameState:
def __init__(self):
self.user_score = 0
self.model_score = 0
self.current_round = 0
self.total_rounds = NUM_ROUNDS
self.game_images = []
self.is_game_active = False
self.last_results = None
self.waiting_for_input = True
def reset(self):
self.__init__()
def get_game_over_message(self):
if self.user_score > self.model_score:
return """
<div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>
🎉 Congratulations! You won! 🎉<br>
You've outperformed SuSy in detecting AI-generated images.<br>
Click 'Start New Game' to play again.
</div>
"""
elif self.user_score < self.model_score:
return """
<div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>
Better luck next time! SuSy won this round.<br>
Keep practicing to improve your detection skills.<br>
Click 'Start New Game' to try again.
</div>
"""
else:
return """
<div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>
It's a tie! You matched SuSy's performance!<br>
You're getting good at this.<br>
Click 'Start New Game' to play again.
</div>
"""
game_state = GameState()
def load_images():
real_image_folder = "real_images"
fake_image_folder = "fake_images"
real_images = [os.path.join(real_image_folder, img) for img in os.listdir(real_image_folder)]
fake_images = [os.path.join(fake_image_folder, img) for img in os.listdir(fake_image_folder)]
selected_images = random.sample(real_images, NUM_ROUNDS // 2) + random.sample(fake_images, NUM_ROUNDS // 2)
random.shuffle(selected_images)
return selected_images
def create_score_html():
results_html = ""
if game_state.last_results:
results_html = f"""
<div style='margin-top: 1rem; padding: 1rem; background-color: #e0e0e0; border-radius: 8px; color: #333;'>
<h4 style='color: #333; margin-bottom: 0.5rem;'>Last Round Results:</h4>
<p style='color: #333;'>Your guess: {game_state.last_results['user_guess']}</p>
<p style='color: #333;'>Model's guess: {game_state.last_results['model_guess']}</p>
<p style='color: #333;'>Correct answer: {game_state.last_results['correct_answer']}</p>
</div>
"""
current_display_round = min(game_state.current_round + 1, game_state.total_rounds)
return f"""
<div style='padding: 1rem; background-color: #f0f0f0; border-radius: 8px; color: #333;'>
<h3 style='margin-bottom: 1rem; color: #333;'>Score Board</h3>
<div style='display: flex; justify-content: space-around;'>
<div>
<h4 style='color: #333;'>You</h4>
<p style='font-size: 1.5rem; color: #333;'>{game_state.user_score}</p>
</div>
<div>
<h4 style='color: #333;'>AI Model</h4>
<p style='font-size: 1.5rem; color: #333;'>{game_state.model_score}</p>
</div>
</div>
<div style='margin-top: 1rem;'>
<p style='color: #333;'>Round: {current_display_round}/{game_state.total_rounds}</p>
</div>
{results_html}
</div>
"""
def start_game():
game_state.reset()
game_state.game_images = load_images()
game_state.is_game_active = True
game_state.waiting_for_input = True
current_image = Image.open(game_state.game_images[0])
return (
gr.update(value=current_image, visible=True),
gr.update(visible=False),
gr.update(visible=True, interactive=True),
gr.update(visible=True, interactive=True),
create_score_html(),
gr.update(visible=False)
)
def submit_guess(user_guess):
if not game_state.is_game_active or not game_state.waiting_for_input:
return [gr.update()] * 6
# Compute Model Guess
current_image = Image.open(game_state.game_images[game_state.current_round])
model_prediction = process_image(current_image)
model_guess = "Real" if model_prediction['Authentic'] > PROB_THRESHOLD else "Fake"
correct_answer = "Real" if "real_images" in game_state.game_images[game_state.current_round] else "Fake"
# Update scores
if user_guess == correct_answer:
game_state.user_score += 1
if model_guess == correct_answer:
game_state.model_score += 1
# Store last results for display
game_state.last_results = {
'user_guess': user_guess,
'model_guess': model_guess,
'correct_answer': correct_answer
}
game_state.current_round += 1
game_state.waiting_for_input = True
# Check if game is over
if game_state.current_round >= game_state.total_rounds:
game_state.is_game_active = False
return (
gr.update(value=None, visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
create_score_html(),
gr.update(visible=True, value=game_state.get_game_over_message())
)
next_image = Image.open(game_state.game_images[game_state.current_round])
return (
gr.update(value=next_image, visible=True),
gr.update(visible=False),
gr.update(visible=True, interactive=True),
gr.update(visible=True, interactive=True),
create_score_html(),
gr.update(visible=False)
)
# Custom CSS
custom_css = """
#game-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
#start-button {
max-width: 200px;
margin: 0 auto;
}
#guess-buttons {
display: flex;
gap: 10px;
justify-content: center;
margin-top: 20px;
}
.guess-button {
min-width: 120px;
}
.image-container img {
max-height: 768px !important;
width: auto !important;
object-fit: contain !important;
}
"""
# Define Gradio interface
with gr.Blocks(css=custom_css) as iface:
with gr.Column(elem_id="game-container"):
gr.HTML("""
<table style="border-collapse: collapse; border: none; padding: 20px;">
<tr style="border: none;">
<td style="border: none; vertical-align: top; padding-right: 30px; padding-left: 30px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/62f7a16192950415b637e201/NobqlpFbFkTyBi1LsT9JE.png" alt="SuSy Logo" width="120" style="margin-bottom: 10px;">
</td>
<td style="border: none; vertical-align: top; padding: 10px;">
<p style="margin-bottom: 15px;">Compete against SuSy to spot AI-Generated images! SuSy can distinguish between authentic images and those generated by DALL·E, Midjourney and Stable Diffusion.</p>
<p style="margin-top: 15px;">Learn more about SuSy: <a href="https://arxiv.org/abs/2409.14128">Present and Future Generalization of Synthetic Image Detectors</a></p>
<p style="margin-top: 15px;">
Enter the SuSy-verse!
<a href="https://huggingface.co/HPAI-BSC/SuSy">Model</a> |
<a href="https://github.com/HPAI-BSC/SuSy">Code</a> |
<a href="https://huggingface.co/datasets/HPAI-BSC/SuSy-Dataset">Dataset</a>
</p>
</td>
</tr>
</table>
""")
with gr.Row():
with gr.Column(scale=2):
image_display = gr.Image(
type="pil",
label="Current Image",
interactive=False,
visible=False,
elem_classes=["image-container"]
)
with gr.Row(elem_id="guess-buttons"):
real_button = gr.Button(
"Real",
visible=False,
variant="primary",
elem_classes=["guess-button"]
)
fake_button = gr.Button(
"Fake",
visible=False,
variant="primary",
elem_classes=["guess-button"]
)
with gr.Column(scale=1):
score_display = gr.HTML()
with gr.Row():
with gr.Column(elem_id="start-button"):
start_button = gr.Button("Start New Game", variant="primary", size="sm")
feedback_display = gr.Markdown(visible=False)
# Event handlers
start_button.click(
fn=start_game,
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
real_button.click(
fn=lambda: submit_guess("Real"),
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
fake_button.click(
fn=lambda: submit_guess("Fake"),
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
# Launch the interface
iface.launch()