import os import random from dataclasses import dataclass from threading import Lock from typing import List, Optional import gradio as gr import numpy as np import torch from PIL import Image from skimage.feature import graycomatrix, graycoprops from torchvision import transforms NUM_ROUNDS = 10 PROB_THRESHOLD = 0.3 # Load the model model = torch.jit.load("SuSy.pt") @dataclass class GameResults: user_guess: str model_guess: str correct_answer: str class GameState: def __init__(self): self.lock = Lock() self._reset() def _reset(self): """Internal reset method - should be called within a lock""" self.user_score = 0 self.model_score = 0 self.current_round = 0 self.total_rounds = NUM_ROUNDS self.game_images: List[str] = [] self.is_game_active = False self.last_results: Optional[GameResults] = None self.processing_submission = False def reset(self): """Public reset method with lock protection""" with self.lock: self._reset() def start_new_game(self) -> tuple[bool, Optional[str]]: """ Starts a new game and returns (success, first_image_path) """ with self.lock: if self.is_game_active: return False, None try: self._reset() self.game_images = load_images() if not self.game_images: return False, None self.is_game_active = True return True, self.game_images[0] except Exception as e: print(f"Error starting new game: {e}") self._reset() return False, None def can_submit_guess(self) -> bool: with self.lock: return ( self.is_game_active and not self.processing_submission and self.current_round < self.total_rounds and len(self.game_images) > self.current_round ) def start_submission(self) -> bool: with self.lock: if not self.can_submit_guess(): return False self.processing_submission = True return True def finish_submission(self, results: GameResults): with self.lock: if results.user_guess == results.correct_answer: self.user_score += 1 if results.model_guess == results.correct_answer: self.model_score += 1 self.last_results = results self.current_round += 1 self.processing_submission = False if self.current_round >= self.total_rounds: self.is_game_active = False def get_current_image(self) -> Optional[str]: with self.lock: if not self.is_game_active or self.current_round >= len(self.game_images): return None return self.game_images[self.current_round] def get_game_state(self): """Get a snapshot of the current game state""" with self.lock: return { 'is_active': self.is_game_active, 'current_round': self.current_round, 'total_rounds': self.total_rounds, 'user_score': self.user_score, 'model_score': self.model_score, 'last_results': self.last_results } def get_game_over_message(self) -> str: with self.lock: if self.user_score > self.model_score: return """
🎉 Congratulations! You won! 🎉
You've outperformed SuSy in detecting AI-generated images.
Click 'Start New Game' to play again.
""" elif self.user_score < self.model_score: return """
Better luck next time! SuSy won this round.
Keep practicing to improve your detection skills.
Click 'Start New Game' to try again.
""" else: return """
It's a tie! You matched SuSy's performance!
You're getting good at this.
Click 'Start New Game' to play again.
""" def process_image(image): # Set Parameters top_k_patches = 5 patch_size = 224 # Get the image dimensions width, height = image.size # Calculate the number of patches num_patches_x = width // patch_size num_patches_y = height // patch_size # Divide the image in patches patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8) for i in range(num_patches_x): for j in range(num_patches_y): x = i * patch_size y = j * patch_size patch = image.crop((x, y, x + patch_size, y + patch_size)) patches[i * num_patches_y + j] = np.array(patch) # Compute the most relevant patches dissimilarity_scores = [] for patch in patches: transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()]) grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0) glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True) dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0]) # Sort patch indices by their dissimilarity score sorted_indices = np.argsort(dissimilarity_scores)[::-1] # Extract top k patches and convert them to tensor top_patches = patches[sorted_indices[:top_k_patches]] top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0 # Predict patches model.eval() with torch.no_grad(): preds = model(top_patches) # Process results classes = ['Authentic', 'DALL·E 3', 'Stable Diffusion 1.x', 'MJ V5/V6', 'MJ V1/V2', 'Stable Diffusion XL'] mean_probs = preds.mean(dim=0).numpy() # Create a dictionary of class probabilities class_probs = {cls: prob for cls, prob in zip(classes, mean_probs)} # Sort probabilities in descending order sorted_probs = dict(sorted(class_probs.items(), key=lambda item: item[1], reverse=True)) return sorted_probs def load_images(): real_image_folder = "real_images" fake_image_folder = "fake_images" real_images = [os.path.join(real_image_folder, img) for img in os.listdir(real_image_folder)] fake_images = [os.path.join(fake_image_folder, img) for img in os.listdir(fake_image_folder)] selected_images = random.sample(real_images, NUM_ROUNDS // 2) + random.sample(fake_images, NUM_ROUNDS // 2) random.shuffle(selected_images) return selected_images def create_score_html() -> str: game_state_snapshot = game_state.get_game_state() results_html = "" if game_state_snapshot['last_results']: results = game_state_snapshot['last_results'] results_html = f"""

Last Round Results:

Your guess: {results.user_guess}

Model's guess: {results.model_guess}

Correct answer: {results.correct_answer}

""" current_display_round = min(game_state_snapshot['current_round'] + 1, game_state_snapshot['total_rounds']) return f"""

Score Board

You

{game_state_snapshot['user_score']}

AI Model

{game_state_snapshot['model_score']}

Round: {current_display_round}/{game_state_snapshot['total_rounds']}

{results_html}
""" game_state = GameState() def start_game(): """Initialize a new game""" success, first_image_path = game_state.start_new_game() if not success or not first_image_path: print("Failed to start new game") return [gr.update()] * 6 try: current_image = Image.open(first_image_path) return ( gr.update(value=current_image, visible=True), gr.update(visible=False), gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), create_score_html(), gr.update(visible=False) ) except Exception as e: print(f"Error starting game: {e}") game_state.reset() return [gr.update()] * 6 def submit_guess(user_guess: str): """Handle user guess submission""" if not game_state.can_submit_guess(): return [gr.update()] * 6 if not game_state.start_submission(): return [gr.update()] * 6 try: current_image_path = game_state.get_current_image() if not current_image_path: game_state.processing_submission = False return [gr.update()] * 6 current_image = Image.open(current_image_path) model_prediction = process_image(current_image) model_guess = "Real" if model_prediction['Authentic'] > PROB_THRESHOLD else "Fake" correct_answer = "Real" if "real_images" in current_image_path else "Fake" results = GameResults(user_guess, model_guess, correct_answer) game_state.finish_submission(results) if not game_state.is_game_active: return ( gr.update(value=None, visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), create_score_html(), gr.update(visible=True, value=game_state.get_game_over_message()) ) next_image_path = game_state.get_current_image() if not next_image_path: return [gr.update()] * 6 next_image = Image.open(next_image_path) return ( gr.update(value=next_image, visible=True), gr.update(visible=False), gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), create_score_html(), gr.update(visible=False) ) except Exception as e: print(f"Error processing guess: {e}") game_state.processing_submission = False return [gr.update()] * 6 # Custom CSS custom_css = """ #game-container { max-width: 1200px; margin: 0 auto; padding: 20px; } #start-button { max-width: 200px; margin: 0 auto; } #guess-buttons { display: flex; gap: 10px; justify-content: center; margin-top: 20px; } .guess-button { min-width: 120px; } .image-container img { max-height: 640px !important; width: auto !important; object-fit: contain !important; } """ # Define Gradio interface with gr.Blocks(css=custom_css) as iface: with gr.Column(elem_id="game-container"): gr.HTML("""
SuSy Logo

Compete against SuSy to spot AI-Generated images! SuSy can distinguish between authentic images and those generated by DALL·E, Midjourney and Stable Diffusion.

Learn more about SuSy: Present and Future Generalization of Synthetic Image Detectors

Enter the SuSy-verse! Model | Code | Dataset

""") with gr.Row(): with gr.Column(scale=2): image_display = gr.Image( type="pil", label="Current Image", interactive=False, visible=False, elem_classes=["image-container"] ) with gr.Row(elem_id="guess-buttons"): real_button = gr.Button( "Real", visible=False, variant="primary", elem_classes=["guess-button"] ) fake_button = gr.Button( "Fake", visible=False, variant="primary", elem_classes=["guess-button"] ) with gr.Column(scale=1): score_display = gr.HTML() with gr.Row(): with gr.Column(elem_id="start-button"): start_button = gr.Button("Start New Game", variant="primary", size="sm") feedback_display = gr.Markdown(visible=False) # Event handlers start_button.click( fn=start_game, outputs=[ image_display, start_button, real_button, fake_button, score_display, feedback_display ] ) real_button.click( fn=lambda: submit_guess("Real"), outputs=[ image_display, start_button, real_button, fake_button, score_display, feedback_display ] ) fake_button.click( fn=lambda: submit_guess("Fake"), outputs=[ image_display, start_button, real_button, fake_button, score_display, feedback_display ] ) # Launch the interface iface.launch()