File size: 4,884 Bytes
c2a02c6
 
 
 
 
 
 
 
 
 
 
8a2e1bf
c2a02c6
c8b993f
 
 
0d7f3a7
 
 
9e2f96b
0d7f3a7
c2a02c6
8a2e1bf
 
 
c2a02c6
8a2e1bf
c2a02c6
 
 
 
 
e5bafbe
744531f
43efedb
 
 
 
 
 
 
c2a02c6
b27ef4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e2f96b
c8b993f
 
 
 
806931d
c8b993f
 
7da329c
c8b993f
7da329c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb78a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0f4539
1377312
efb78a7
52802dd
 
1377312
53e6a07
a0f4539
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
import pandas as pd 
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/') 
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
showWarningOnDirectExecution = False


    
# Check if 'key' already exists in session_state
# If not, then initialize it
if 'visibility' not in st.session_state:
    st.session_state['visibility'] = 'hidden'
    st.session_state.disabled = False

original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
 
st.write('')
st.write('')
st.write('')
st.write('')

selected_df = pd.DataFrame()
with st.form('mform', clear_on_submit=False):
    source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
    impute = st.selectbox('Imputation',[True, False])
    input_data = st.text_input('Enter SAV data points (Format Provided Below)', "P13637-T-613-M, Q9Y4W6-N-432-T",label_visibility=st.session_state.visibility,
            disabled=st.session_state.disabled,
            placeholder=st.session_state.visibility,
            )
    

    parser = argparse.ArgumentParser(description='ASCARIS')
    
    parser.add_argument('-s', '--source_option',
                        help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
                        default=1)
    parser.add_argument('-i', '--input_datapoint',
                        help='Input file or query datapoint\n Option 1: Comma-separated list of idenfiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
    
    parser.add_argument('-impute', '--imputation_state', default='True',
                        help='Whether resulting feature vector should be imputed or not. Default True.')
    
    args = parser.parse_args()
    
    input_set = input_data
    mode = source
    impute = impute
    submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
    print('*****************************************')
    print('Feature vector generation is in progress. \nPlease check log file for updates..')
    print('*****************************************')
    mode = int(mode)
    
    
    
    if submitted:
        
        with st.spinner('In progress...This may take a while...'):
            try:
                if mode == 1:
                    selected_df = pdb_featureVector.pdb(input_set, mode, impute)    
                    
                elif mode == 2:
                    selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
                else:
                    selected_df =  pd.DataFrame()
    
                st.write(selected_df)
            except:
                selected_df = pd.DataFrame()
                pass
        st.success('Feature vector successfully created.')


def download_button(object_to_download, download_filename):
  
    if isinstance(object_to_download, pd.DataFrame):
        object_to_download = object_to_download.to_csv(index=False)

    # Try JSON encode for everything else
    else:
        object_to_download = json.dumps(object_to_download)
    try:
        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()

    except AttributeError as e:
        b64 = base64.b64encode(object_to_download).decode()

    dl_link = f"""<html><head><title>Start Auto Download file</title><script src="http://code.jquery.com/jquery-3.2.1.min.js"></script><script>$('<a href="data:text/csv;base64,{b64}" download="{download_filename}">')[0].click()</script></head></html>"""
    return dl_link


def download_df():
    components.html(
        download_button(selected_df, st.session_state.filename),
        height=0,
    )
"""
selected_df = selected_df.astype(str)
st.write(selected_df)
with st.form("download_form", clear_on_submit=False):
    st.text_input("Enter filename", key="filename")
    submit = st.form_submit_button("Download", on_click=selected_df)

"""
def convert_df(df):
   return df.to_csv(index=False).encode('utf-8')


csv = convert_df(selected_df)

st.download_button("Press to Download", csv,"file.csv","text/csv",key='download-csv')