Spaces:
Running
Running
File size: 6,518 Bytes
c2a02c6 8a2e1bf c2a02c6 0d7f3a7 c2a02c6 8a2e1bf c2a02c6 8a2e1bf c2a02c6 b27ef4c 43efedb c2a02c6 b27ef4c c2a02c6 8a2e1bf 806931d c2a02c6 b27ef4c c2a02c6 b27ef4c c2a02c6 1b0a136 b27ef4c c2a02c6 8a2e1bf c2a02c6 8a2e1bf c2a02c6 8a2e1bf c2a02c6 8a2e1bf 1b0a136 8a2e1bf c2a02c6 8a2e1bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import pandas as pd
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/')
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
showWarningOnDirectExecution = False
# Check if 'key' already exists in session_state
# If not, then initialize it
if 'visibility' not in st.session_state:
st.session_state['visibility'] = 'visible'
st.session_state.disabled = False
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
st.write('')
st.write('')
st.write('')
st.write('')
with st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)):
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
impute = st.selectbox('Imputation',[True, False])
input_data = st.text_input('Enter SAV data points (Format Provided Below)', "P13637-T-613-M, Q9Y4W6-N-432-T",label_visibility=st.session_state.visibility,
disabled=st.session_state.disabled,
placeholder=st.session_state.visibility,
)
parser = argparse.ArgumentParser(description='ASCARIS')
parser.add_argument('-s', '--source_option',
help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
default=1)
parser.add_argument('-i', '--input_datapoint',
help='Input file or query datapoint\n Option 1: Comma-separated list of idenfiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
parser.add_argument('-impute', '--imputation_state', default='True',
help='Whether resulting feature vector should be imputed or not. Default True.')
args = parser.parse_args()
input_set = input_data
mode = source
impute = impute
print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
mode = int(mode)
with st.spinner('In progress...This may take a while...'):
try:
if mode == 1:
selected_df = pdb_featureVector.pdb(input_set, mode, impute)
int_builder = GridOptionsBuilder.from_dataframe(selected_df)
int_builder.configure_default_column(editable=False, filterable=True, cellStyle={'text-align': 'center'})
int_builder.configure_pagination(enabled=True, paginationAutoPageSize=False, paginationPageSize=10)
int_builder.configure_selection(selection_mode='multiple', use_checkbox=True)
gridoptions = int_builder.build()
int_return = AgGrid(selected_df,
width='100%',
height=(len(selected_df) + 4) * 35.2 + 3,
theme='light',
enable_enterprise_modules=False,
gridOptions=gridoptions,
fit_columns_on_grid_load=False,
update_mode=GridUpdateMode.SELECTION_CHANGED, # or MODEL_CHANGED
custom_css={".ag-header-cell-label": {"justify-content": "center"}})
st.success('Feature vector successfully created.')
elif mode == 2:
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
int_builder = GridOptionsBuilder.from_dataframe(selected_df)
int_builder.configure_default_column(editable=False, filterable=True, cellStyle={'text-align': 'center'})
int_builder.configure_pagination(enabled=True, paginationAutoPageSize=False, paginationPageSize=10)
int_builder.configure_selection(selection_mode='multiple', use_checkbox=True)
gridoptions = int_builder.build()
int_return = AgGrid(selected_df,
width='100%',
height=(len(selected_df) + 4) * 35.2 + 3,
theme='light',
enable_enterprise_modules=False,
gridOptions=gridoptions,
fit_columns_on_grid_load=False,
update_mode=GridUpdateMode.SELECTION_CHANGED, # or MODEL_CHANGED
custom_css={".ag-header-cell-label": {"justify-content": "center"}})
st.success('Feature vector successfully created.')
else:
int_return = pd.DataFrame()
except:
pass
selected_df = pd.DataFrame()
int_return = pd.DataFrame()
def download_button(object_to_download, download_filename):
if isinstance(object_to_download, pd.DataFrame):
object_to_download = object_to_download.to_csv(index=False)
# Try JSON encode for everything else
else:
object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(object_to_download).decode()
dl_link = f"""<html><head><title>Start Auto Download file</title><script src="http://code.jquery.com/jquery-3.2.1.min.js"></script><script>$('<a href="data:text/csv;base64,{b64}" download="{download_filename}">')[0].click()</script></head></html>"""
return dl_link
def download_df():
components.html(
download_button(selected_df, st.session_state.filename),
height=0,
)
selected_row = int_return["selected_rows"]
selected_df = pd.DataFrame(selected_row, columns=selected_df.columns)
with st.form("my_form", clear_on_submit=False):
st.text_input("Enter filename", key="filename")
submit = st.form_submit_button("Download", on_click=selected_df)
|