File size: 5,474 Bytes
c2a02c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
import pandas as pd 
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/') 
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
showWarningOnDirectExecution = False
def download_button(object_to_download, download_filename):
  
    if isinstance(object_to_download, pd.DataFrame):
        object_to_download = object_to_download.to_csv(index=False)

    # Try JSON encode for everything else
    else:
        object_to_download = json.dumps(object_to_download)
    try:
        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()

    except AttributeError as e:
        b64 = base64.b64encode(object_to_download).decode()

    dl_link = f"""<html><head><title>Start Auto Download file</title><script src="http://code.jquery.com/jquery-3.2.1.min.js"></script><script>$('<a href="data:text/csv;base64,{b64}" download="{download_filename}">')[0].click()</script></head></html>"""
    return dl_link


def download_df():
    components.html(
        download_button(selected_df, st.session_state.filename),
        height=0,
    )


original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 35px; font-weight:bold; text-align:center">Welcome to ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
st.write('')
st.write('')
st.write('')
st.write('')



source = st.selectbox('Select Protein Structure Database (1: PDB, SwissModel, Modbase 2: AlphaFold)',[1,2])
impute = st.selectbox('Select Imputation',[True, False])
input_data = st.text_input('Enter Input Variation')




#sys.path.append(path.abspath('../code/'))
parser = argparse.ArgumentParser(description='ASCARIS')

parser.add_argument('-s', '--source_option',
                    help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
                    default=1)
parser.add_argument('-i', '--input_datapoint',
                    help='Input file or query datapoint\n Option 1: Comma-separated list of idenfiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')

parser.add_argument('-impute', '--imputation_state', default='True',
                    help='Whether resulting feature vector should be imputed or not. Default True.')

args = parser.parse_args()

input_set = input_data
mode = source
impute = impute

print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
mode = int(mode)

with st.spinner('In progress...This may take a while...'):
    try:
        if mode == 1:
            selected_df = pdb_featureVector.pdb(input_set, mode, impute)
            int_builder = GridOptionsBuilder.from_dataframe(selected_df)
            int_builder.configure_default_column(editable=False, filterable=True, cellStyle={'text-align': 'center'})
            int_builder.configure_pagination(enabled=True, paginationAutoPageSize=False, paginationPageSize=10)
            int_builder.configure_selection(selection_mode='multiple', use_checkbox=True)
            gridoptions = int_builder.build()
            int_return = AgGrid(selected_df,
                        width='100%',
                        height=(len(selected_df) + 4) * 35.2 + 3,
                        theme='light',
                        enable_enterprise_modules=False,
                        gridOptions=gridoptions,
                        fit_columns_on_grid_load=False,
                        update_mode=GridUpdateMode.SELECTION_CHANGED, # or MODEL_CHANGED
                        custom_css={".ag-header-cell-label": {"justify-content": "center"}})
            st.success('Feature vector successfully created.')

            
        elif mode == 2:
            selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
            int_builder = GridOptionsBuilder.from_dataframe(selected_df)
            int_builder.configure_default_column(editable=False, filterable=True, cellStyle={'text-align': 'center'})
            int_builder.configure_pagination(enabled=True, paginationAutoPageSize=False, paginationPageSize=10)
            int_builder.configure_selection(selection_mode='multiple', use_checkbox=True)
            gridoptions = int_builder.build()
            int_return = AgGrid(selected_df,
                        width='100%',
                        height=(len(selected_df) + 4) * 35.2 + 3,
                        theme='light',
                        enable_enterprise_modules=False,
                        gridOptions=gridoptions,
                        fit_columns_on_grid_load=False,
                        update_mode=GridUpdateMode.SELECTION_CHANGED, # or MODEL_CHANGED
                        custom_css={".ag-header-cell-label": {"justify-content": "center"}})
            st.success('Feature vector successfully created.')
            

    except:
        pass
        download_df = pd.DataFrame()

with st.form("my_form", clear_on_submit=False):
                st.text_input("Enter filename", key="filename")
                submit = st.form_submit_button("Download feature vector", on_click=download_df)