Spaces:
Sleeping
Sleeping
File size: 3,421 Bytes
c2a02c6 84bc25a c2a02c6 8a2e1bf 754deb7 728e884 ec06c4b e7a3b62 754deb7 84bc25a 0d7f3a7 b68774d 9abc2e6 c2a02c6 082f385 8a2e1bf 082f385 c2a02c6 082f385 c2a02c6 38ea622 082f385 ee0298f c241227 082f385 f9b9a8c 082f385 65d977a 84bc25a 65d977a 84bc25a 65d977a 9e2f96b c8b993f 84bc25a 806931d fa82089 082f385 8f90700 84bc25a 38ea622 9cffd28 01279fb da9bcac e52de1a d6a723e 84bc25a e52de1a 84bc25a e52de1a e3df29c 05e0ac4 e52de1a 01279fb 84bc25a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
import pandas as pd
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/')
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
showWarningOnDirectExecution = False
def convert_df(df):
return df.to_csv(index=False, sep='\t').encode('utf-8')
# Check if 'key' already exists in session_state
# If not, then initialize it
if 'visibility' not in st.session_state:
st.session_state['visibility'] = 'visible'
st.session_state.disabled = False
showWarningOnDirectExecution = False
original_title = '<p style="font-family:Trebuchet MS; color:#000000; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#000000; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
st.write('')
st.write('')
st.write('')
st.write('')
with st.form('mform', clear_on_submit=False):
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
#source = 1
impute = st.selectbox('Missing value imputation (mostly for the cases where the corresponding annotation does not exist in the protein)',[True, False])
input_data = st.text_input('Enter SAV data points (format: "UniProt/Swiss-Prot human protein accession" – "wild type a.a." – "position on the sequence" – "mutated a.a."). Example: Q9BTP7-S-126-F or P04217-A-493-S, Q00889-G-2-L')
parser = argparse.ArgumentParser(description='ASCARIS')
input_set = input_data
mode = source
impute = impute
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
mode = int(mode)
selected_df = pd.DataFrame()
st.write('The online tool may be slow, especially while processing multiple SAVs and with multiple PDB matches. To address this, please consider using the programmatic version at https://github.com/HUBioDataLab/ASCARIS/')
if submitted:
with st.spinner('In progress...This may take a while...'):
# try:
if mode == 1:
selected_df = pdb_featureVector.pdb(input_set, mode, impute)
elif mode == 2:
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
else:
selected_df = pd.DataFrame()
if selected_df is None:
st.success('Feature vector failed.')
else:
if len(selected_df) != 0 :
st.write(selected_df)
st.success('Feature vector successfully created.')
csv = convert_df(selected_df)
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv')
else:
st.success('Feature vector failed.')
|