File size: 10,525 Bytes
02bf24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6124876
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import ssl
import requests as r
from decimal import *
import numpy as np
import pandas as pd
import json
import ast

UNIPROT_ANNOTATION_COLS =  ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding',
     'activeSite',
     'nucleotideBinding', 'lipidation', 'site', 'transmembrane',
     'crosslink', 'mutagenesis', 'strand',
     'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain',
     'caBinding', 'bindingSite', 'region',
     'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif',
     'coiledCoil', 'peptide',
     'transitPeptide', 'glycosylation', 'propeptide', 'disulfideBinary',
     'intMetBinary', 'intramembraneBinary',
     'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
     'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
     'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
     'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
     'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
     'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
     'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
     'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
     'glycosylationBinary', 'propeptideBinary']

annotation_list = UNIPROT_ANNOTATION_COLS[0:30]

def add_annotations(dataframe):
    print('Downloading UniProt sequence annotations...\n')
    ssl._create_default_https_context = ssl._create_unverified_context

    original_annot_name = ['DISULFID', 'INIT_MET', 'INTRAMEM', 'VARIANT', 'DNA_BIND', 'ACT_SITE', 'NP_BIND', 'LIPID',
                           'SITE', 'TRANSMEM', 'CROSSLNK', 'MUTAGEN', 'STRAND', 'HELIX', 'TURN', 'METAL', 'REPEAT', 'TOPO_DOM',
                           'CA_BIND', 'BINDING', 'REGION', 'SIGNAL', 'MOD_RES', 'ZN_FING', 'MOTIF', 'COILED', 'PEPTIDE',
                           'TRANSIT', 'CARBOHYD', 'PROPEP']

    annotation_list = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding', 'activeSite',
                       'nucleotideBinding', 'lipidation', 'site', 'transmembrane', 'crosslink', 'mutagenesis', 'strand',
                       'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain', 'caBinding', 'bindingSite',
                       'region', 'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif', 'coiledCoil', 'peptide',
                       'transitPeptide', 'glycosylation', 'propeptide']

    dataframe = dataframe.reset_index().drop(['index'], axis=1)
    for protein in list(set(dataframe.uniprotID.to_list())):
        print('Retieving annotations for ' + protein)
        uniprot_entry = r.get("http://www.uniprot.org/uniprot/" + protein + ".txt")
        uniprot_entry = uniprot_entry.text.split('\n')
        annot_for_protein = []
        for annotation in original_annot_name:
            for line in uniprot_entry:
                if annotation.strip() in line and line.startswith(
                        'FT') and 'evidence' not in line and 'ECO' not in line and 'note' not in line:
                    annot_for_protein.append(list(filter(None, line.split(' ')))[1:])
        annotations_present = []
        for select in annot_for_protein:
            if select[0] not in annotations_present:
                dataframe.loc[dataframe.uniprotID == protein, select[0]] = str((select[1].replace('..', '-') + '; '))
                annotations_present.append(select[0])
            else:
                dataframe.loc[dataframe.uniprotID == protein, select[0]] += str((select[1].replace('..', '-') + '; '))
        missingAnnotations = list(set(original_annot_name) - set(annotations_present))
        for miss in missingAnnotations:
            dataframe.loc[dataframe.uniprotID == protein, miss] = np.NaN

    for i in range(len(original_annot_name)):
        dataframe = dataframe.rename(columns={original_annot_name[i]: annotation_list[i]})
    # Fix annotation positions
    print('Processing positions...\n')
    for i in dataframe.index:
        all_positions = []
        for annot in annotation_list:
            if (annot != 'disulfide') & (pd.isna(dataframe.at[i, annot]) != True):
                dataframe.at[i, annot] = [x for x in [k.strip() for k in dataframe.at[i, annot].split(';')] if x]
                all_positions.append(dataframe.at[i, annot])
            elif (annot == 'disulfide') & (pd.isna(dataframe.at[i, annot]) != True):
                dataframe.at[i, annot] = dataframe.at[i, annot].split(';')
                dataframe.at[i, annot] = [i.split('-') for i in dataframe.at[i, annot]]
                dataframe.at[i, annot] = [e for v in  dataframe.at[i, annot] for e in v]
                dataframe.at[i, annot] = [i for i in dataframe.at[i, annot] if i != ' ']
                all_positions.append(dataframe.at[i, annot])
            dataframe.at[i, annot] = str(dataframe.at[i, annot])
        all_positions = [item for sublist in all_positions for item in sublist]
        updated_allPos = []
        for pos in all_positions:
            if '-' in pos:
                first = pos.split('-')[0]
                second = pos.split('-')[1]
                newPos = list(range(int(first), int(second)+1))
                updated_allPos += newPos
            else:
                updated_allPos.append(int(pos))
        updated_allPos.append(dataframe.at[i, 'pos'])
        updated_allPos.append(dataframe.at[i, 'domEnd'])
        updated_allPos.append(dataframe.at[i, 'domStart'])
        updated_allPos = [int(i) for i in updated_allPos]
        dataframe.loc[i, 'POSITIONS'] = str(list(set(updated_allPos)))

    # Add binary annotations
    print('Adding binary annotations...\n')
    for i in dataframe.index:
        for k in annotation_list:  # get the positions of each attribute as a list
            txt = k + 'Binary'
            dataframe.at[i, txt] = np.NaN
            try:
                for positions in dataframe.at[i, k].split(','):
                    position = positions.strip('[').strip(']').replace("'", "")
                    if (position != np.NaN) and (position != '') and ('-' not in position) and (int(
                            dataframe.at[i, 'pos']) == int(position)):
                        dataframe.at[i, txt] = '1'
                        break
                    elif (position != np.NaN) and (position != '') and ('-' not in position) and (int(
                            dataframe.at[i, 'pos']) != int(position)):
                        dataframe.at[i, txt] = '0'
                    elif (position != np.NaN) and (position != '') and ('-' in position):
                        if int(position.split('-')[0]) < int(dataframe.at[i, 'pos']) < int(position.split('-')[1]):
                            dataframe.at[i, txt] = '1'
                            break
                        else:
                            dataframe.at[i, txt] = '0'
            except:
                ValueError
    # Final corrections
    dataframe = dataframe.replace({'[\'?\']': np.NaN})
    dataframe = dataframe.replace({'[]': np.NaN})
    dataframe = dataframe.replace({'': np.NaN})
    dataframe = dataframe.fillna(np.NaN)
    return dataframe

def changeUPtoPDB(dataframe):
    for i in dataframe.index:
        for col in annotation_list:
            newList = []
            if dataframe.at[i, col] != np.NaN:
                if type(dataframe.at[i, col]) == str:
                    list_v = dataframe.at[i, col][1:-1].split(',')
                    positionList = [i.strip().strip('\'') for i in list_v]
                elif type(dataframe.at[i, col]) == list:
                    positionList = dataframe.at[i, col]
                else:
                    positionList = []
                for position in positionList:
                    if '-' in position:
                        all_annots = list(range(int(position.split('-')[0]), int(position.split('-')[1])+1))
                        for annot in all_annots:
                            try:
                                newList.append(ast.literal_eval(dataframe.at[i, 'MATCHDICT'])[str(annot)])
                            except KeyError:
                                pass
                            except TypeError:
                                pass
                    else:
                        try:
                            newList.append(ast.literal_eval(dataframe.at[i, 'MATCHDICT'])[str(position)])
                        except KeyError:
                            pass
                        except TypeError:
                            pass
            dataframe.loc[i, col] = str(newList)
    return dataframe


def changeUPtoModels(dataframe):
    dataframe.fillna(np.NaN, inplace=True)
    for i in dataframe.index:
        for col in annotation_list:
            newList = []
            if (dataframe.at[i, col] != np.NaN) or (type(dataframe.at[i, col]) != 'float'):
                if (type(dataframe.at[i, col]) == str) and  (str(dataframe.at[i, col]) != 'nan') :
                    list_v = dataframe.at[i, col][1:-1].split(',')
                    positionList = [i.strip().strip('\'') for i in list_v]
                elif type(dataframe.at[i, col]) == list:
                    positionList = dataframe.at[i, col]
                else:
                    positionList = []

                if positionList != []:
                    for position in positionList:
                        if '-' in position:
                            all_annots = list(range(int(position.split('-')[0]), int(position.split('-')[1])+1))
                            newList += all_annots
                        else:
                            newList.append(str(position))
                            pass
                else:
                    all_annots = np.NaN
            else:
                all_annots = np.NaN
            newList = [str(i) for i in newList]

            dataframe.loc[i, col] = str(newList)

    return dataframe


def isZeroDistance(data):
    data.fillna(np.NaN, inplace=True)
    for i in data.index:

        for col in UNIPROT_ANNOTATION_COLS[0:30]:
            if data.at[i, col] != np.NaN:
                if type(data.at[i, col]) != 'dict':
                    annotList = ast.literal_eval(data.at[i, col])
                else:
                    annotList = data.at[i, col]
                annotList = [int(i.strip()) for i in annotList if i != 'null']
                if int(data.at[i, 'pos']) in annotList:
                    data.at[i, col] = 'hit'
    return data