Spaces:
Sleeping
Sleeping
File size: 28,438 Bytes
c2a02c6 e837258 c2a02c6 e837258 c2a02c6 1b166bd c2a02c6 1b166bd e837258 c2a02c6 e837258 c2a02c6 9215a83 c2a02c6 e837258 f761ce4 b619b02 f761ce4 869b53c f761ce4 e837258 f761ce4 e837258 f761ce4 e837258 f761ce4 e837258 f761ce4 29503f2 f761ce4 e837258 f761ce4 e837258 f761ce4 869b53c e837258 f761ce4 e837258 f761ce4 e837258 f761ce4 e837258 f761ce4 e837258 f761ce4 e837258 22b381a ed603e1 22b381a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# IMPORT NECESSARY MODULES AND LIBRARIES
from timeit import default_timer as timer
import xml.etree.ElementTree as ET
from collections import Counter
from bs4 import BeautifulSoup
from io import StringIO
from decimal import *
import pandas as pd
import requests
import os.path as op
import subprocess
import shutil
import ssbio.utils
import warnings
import sys
import pathlib
from pathlib import Path
import os, glob
import math
import ssbio
import ssl
import numpy as np
from Bio.Align import substitution_matrices
from Bio.PDB.Polypeptide import *
from Bio.PDB import PDBList
from Bio import Align
from Bio import SeqIO
from Bio.PDB import *
warnings.filterwarnings("ignore")
start = timer()
# FUNCTIONS
from calc_pc_property import *
from add_domains import *
from retrieveUniprotSequences import *
from add_annotations import *
from add_sequence import *
from add_structure import *
from manage_files import *
from add_sasa import *
from standard import *
from add_interface_pos import *
from standard import *
from utils import *
from pdbMapping import *
from uniprotSequenceMatch import uniprotSequenceMatch
from process_input import clean_data
from urllib.error import HTTPError
from swissModelAdd import *
from modbaseModelAdd import *
import streamlit as st
def pdb(input_set, mode, impute):
# Fill empty dataframes with SIMPLE_COLS
SIMPLE_COLS = ['uniprotID', 'wt', 'pos', 'mut', 'datapoint', 'composition', 'polarity',
'volume', 'granthamScore', 'domain', 'domStart', 'domEnd', 'distance',
'intMet', 'naturalVariant', 'activeSite', 'crosslink', 'mutagenesis',
'strand', 'helix', 'turn', 'region', 'modifiedResidue', 'motif',
'metalBinding', 'lipidation', 'glycosylation', 'topologicalDomain',
'nucleotideBinding', 'bindingSite', 'transmembrane', 'transitPeptide',
'repeat', 'site', 'peptide', 'signalPeptide', 'disulfide', 'coiledCoil',
'intramembrane', 'zincFinger', 'caBinding', 'propeptide', 'dnaBinding',
'disulfideBinary', 'intMetBinary', 'intramembraneBinary',
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
'glycosylationBinary', 'propeptideBinary']
UNIPROT_ANNOTATION_COLS = SIMPLE_COLS[-60:]
path_to_input_files, path_to_output_files, path_to_domains, fisher_path, path_to_interfaces, buffer = manage_files(mode)
out_path = path_to_output_files / 'log.txt'
#sys.stdout = open(out_path, 'w')
data = clean_data(input_set)
if len(data) == 0:
st.write('Feature vectore generation terminated. Please enter a query or check your input format.')
else:
data = add_uniprot_sequence(data)
match = data[(data.wt_sequence_match == 'm')]
org_len = len(match)
iso = data[(data.wt_sequence_match == 'i')]
noMatch = data[(data.wt_sequence_match != 'm') & (data.wt_sequence_match != 'i')]
if len(noMatch) == len(data) :
st.write('Aminoacid at the position could not be mapped to canonical or isoform sequence. Please check the input amino acid.')
elif len(noMatch) > 0:
st.write(
f'{len(noMatch)} of {len(data)} datapoints has not been mapped to any sequence. These datapoints are omitted.')
if len(iso) > 0:
st.write(f'{len(iso)} of {len(data)} datapoints has been mapped to isoform sequences. These datapoints are omitted.')
if len(match) == 0:
st.write('Feature generation terminated due to failed mapping of input amino acid to UniProt sequence.')
else:
st.write(f'{len(match)} of {len(data)} datapoints has been mapped to canonical sequences. Proceeding with these datapoins.')
if (len(iso) != 0) | (len(noMatch) != 0):
st.write('Omitted datapoints are:', noMatch.datapoint.to_list() + iso.datapoint.to_list())
st.write('\n')
st.write('Check log file for updates.')
data = match[['uniprotID', 'wt', 'pos', 'mut', 'datapoint']]
print('>> Feature vector generation started...\n')
print('\n>> Creating directories...')
print('\n>> Adding physicochemical properties...\n')
data = add_physicochemical(data)
print('\n>> Adding domains\n')
data = add_domains(data, path_to_domains)
print('\n>> Adding sequence annotations...\n')
data = add_annotations(data)
print('\n>> Retrieving PDB structure information...\n')
pdb_info = addPDBinfo(data, path_to_output_files)
if len(pdb_info) != 0:
data = pd.merge(data, pdb_info, on='uniprotID', how='left')
# Spare datapoint if there is no associated PDB.
no_pdb = data[data.pdbID.isna()].drop_duplicates()
pdb = data[~data.pdbID.isna()].drop_duplicates()
# Spare datapoint if associated PDB does not cover mutated area.
pdb.pos = pdb.pos.apply(lambda x:int(x))
pdb.start = pdb.start.apply(lambda x: int(x))
pdb.end = pdb.end.apply(lambda x: int(x))
no_pdb_add = pdb[~((pdb.pos > pdb.start) & (pdb.pos < pdb.end))]
pdb = pdb[(pdb.pos > pdb.start) & (pdb.pos < pdb.end)] # do not change order
pdb.reset_index(drop=True, inplace=True)
# Delete spared datapoint from no_pdb list if it has any other PDB that spans the mutated area.
no_pdb_add = no_pdb_add[~no_pdb_add.datapoint.isin(pdb.datapoint.to_list())]
# Final collection of datapoints without PDB associaton.
no_pdb = pd.concat([no_pdb, no_pdb_add])
no_pdb = no_pdb[SIMPLE_COLS]
no_pdb = no_pdb.drop_duplicates()
pdb = pdb.sort_values(['uniprotID', 'resolution'], axis=0, ascending=True)
pdb.reset_index(drop=True, inplace=True)
pdb.fillna(np.NaN, inplace=True)
# Get position mapping from added structures
print('\n>> Adding structure residue positions...\n')
if len(pdb) > 0: # there are mapped structures, and some of them span the mutated area.
pdb.replace({'[]': np.NaN, 'nan-nan': np.NaN, '': np.NaN}, inplace=True)
pdb = pdbMapping(pdb, Path(path_to_output_files / 'pdb_structures'))
pdb.reset_index(drop=True, inplace=True)
pdb = pdb.fillna(np.NaN)
no_pdb_add_ = pdb[pdb.AAonPDB.isna()]
no_pdb_add = pdb[pdb.MATCHDICT.isna()]
no_pdb = pd.concat([no_pdb_add_, no_pdb, no_pdb_add])
no_pdb.reset_index(inplace=True, drop=True)
pdb = pdb[~(pdb.MATCHDICT.isna())]
pdb = pdb[~(pdb.AAonPDB.isna())]
if len(pdb) > 0:
print('\n>> Mapping to PDB residues...\n')
pdb = changeUPtoPDB(pdb)
pdb.reset_index(drop=True, inplace=True)
print('\n>> Calculating 3D distances for PDB structures...\n')
pdb = isZeroDistance(pdb)
pdb = processFile(pdb, path_to_output_files)
pdb = match3D(pdb)
pdb = selectMaxAnnot(pdb)
pdb = pdb.sort_values(by=['datapoint', 'resolution', 'annotTotal'], ascending=[True, True, True])
pdb = pdb.drop_duplicates(['datapoint'])
pdb.replace({'[]': np.NaN, 'hit':0.0}, inplace=True)
print('\n>> PDB matching is completed...\n')
else:
# There was no residue match in the associated PDB. So we cannot use PDB data.
pdb = pdb[SIMPLE_COLS]
print('\n>>> No PDB structure could be matched.')
else:
pdb = pdb[SIMPLE_COLS]
print('\n>>> No PDB structure could be matched.')
else:
pdb = pd.DataFrame(columns = SIMPLE_COLS)
print('\n>>> No PDB structure could be matched.')
no_pdb = data.copy()
no_pdb = no_pdb[SIMPLE_COLS]
print(
'PDB phase is finished...\nPDB structures are found for %d of %d.\n%d of %d failed to match with PDB structure.\n'
% (len(pdb.drop_duplicates(['datapoint'])), len(data.drop_duplicates(['datapoint'])),
len(no_pdb.drop_duplicates(['datapoint'])), len(data.drop_duplicates(['datapoint']))))
print('\n>>> Proceeding to SwissModel search...')
print('------------------------------------\n')
swiss = no_pdb.copy()
if len(swiss) > 0:
print('\n>> Adding SwissModel residue positions...\n')
swiss.replace({'[]': np.NaN, 'nan-nan': np.NaN, '': np.NaN}, inplace=True)
swiss = swiss.fillna(np.NaN)
swiss, no_swiss_models= addSwissModels(swiss, path_to_input_files, path_to_output_files)
print('\n>> Mapping to SwissModels...\n')
if len(swiss) > 0:
swiss.reset_index(drop=True, inplace=True)
swiss = changeUPtoModels(swiss)
swiss.reset_index(drop=True, inplace=True)
print('\n>> Calculating 3D distances for SwissModels...\n')
swiss = isZeroDistance(swiss)
swiss = match3DModels(swiss)
swiss = selectMaxAnnot(swiss)
swiss = swiss.sort_values(by=['datapoint', 'qmean_norm', 'distance', 'hitTotal', 'annotTotal'], ascending=[True, False, True, False, True])
swiss = swiss.drop_duplicates(['datapoint'])
swiss.replace({'[]': np.NaN, 'hit': 0.0}, inplace=True)
else:
swiss = swiss[SIMPLE_COLS]
if len(no_swiss_models) > 0:
no_swiss_models = no_swiss_models[SIMPLE_COLS]
no_swiss_models.reset_index(inplace=True, drop=True)
else:
swiss = swiss[SIMPLE_COLS]
no_swiss_models = no_pdb.copy()
if len(no_swiss_models) >0:
modbase = no_swiss_models.copy()
print('Proceeding to Modbase search...')
print('------------------------------------\n')
modbase = modbase[SIMPLE_COLS]
modbase.replace({'[]': np.NaN, 'nan-nan': np.NaN, '': np.NaN}, inplace=True)
modbase = modbase.fillna(np.NaN)
print('\n>> Adding Modbase residue positions...\n')
modbase_simple = modbase[['uniprotID', 'wt', 'pos', 'mut','datapoint']]
modbase_simple = modbase_simple.drop_duplicates(['uniprotID', 'wt', 'pos' ,'mut','datapoint'])
modbaseOut, no_modbase_models_updated = addModbaseModels(modbase_simple, path_to_input_files, path_to_output_files)
if len(modbaseOut) > 0:
modbase = modbase.merge(modbaseOut, on = ['uniprotID', 'wt', 'pos', 'mut','datapoint'], how = 'left')
no_modbase_models_updated['sasa'] = np.NaN
modbase.reset_index(inplace=True, drop=True)
no_modbase_add = modbase[pd.isna(modbase.coordinates)]
modbase = modbase[~pd.isna(modbase.coordinates)]
no_modbase_models_updated = pd.concat([no_modbase_models_updated, no_modbase_add])
print('\n>> Mapping to Modbase models...\n')
modbase = changeUPtoModels(modbase)
print('\n>> Calculating 3D distances for Modbase models...\n')
modbase = isZeroDistance(modbase)
modbase = match3DModels(modbase)
modbase = selectMaxAnnot(modbase)
modbase = modbase.sort_values(by=['datapoint', 'quality_score', 'distance','hitTotal', 'annotTotal'], ascending=[True, False, True, False, True])
modbase = modbase.drop_duplicates(['datapoint'])
modbase.replace({'[]': np.NaN, 'hit': 0.0}, inplace=True)
else:
modbase = pd.DataFrame(columns = SIMPLE_COLS)
else:
no_modbase_models_updated = pd.DataFrame(columns = SIMPLE_COLS)
modbase= pd.DataFrame(columns = SIMPLE_COLS)
COLS = ['uniprotID', 'wt', 'pos', 'mut', 'datapoint', 'composition', 'polarity', 'volume', 'granthamScore', 'domain', 'domStart', 'domEnd', 'distance',
'region', 'crosslink', 'peptide', 'disulfide', 'signalPeptide', 'propeptide', 'naturalVariant', 'nucleotideBinding', 'modifiedResidue', 'site',
'caBinding', 'turn', 'transmembrane', 'repeat', 'glycosylation', 'intramembrane', 'metalBinding', 'bindingSite', 'dnaBinding', 'activeSite',
'coiledCoil', 'helix', 'mutagenesis', 'zincFinger', 'transitPeptide', 'intMet', 'strand', 'lipidation', 'motif', 'topologicalDomain',
'disulfideBinary', 'intMetBinary', 'intramembraneBinary', 'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary', 'nucleotideBindingBinary',
'lipidationBinary', 'siteBinary', 'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary', 'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary', 'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary', 'modifiedResidueBinary', 'zincFingerBinary',
'motifBinary', 'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary', 'glycosylationBinary', 'propeptideBinary', 'sasa']
if len(no_modbase_models_updated) == 0:
no_modbase_models_updated = pd.DataFrame(columns = SIMPLE_COLS)
no_modbase_models_updated = no_modbase_models_updated[~no_modbase_models_updated.datapoint.isin(modbase.datapoint.to_list())]
no_modbase_models_updated = no_modbase_models_updated[['uniprotID', 'wt', 'pos', 'mut', 'datapoint']]
no_modbase_models_updated.pos = no_modbase_models_updated.pos.astype(int)
no_modbase_models_updated = no_modbase_models_updated.drop_duplicates()
if len(pdb)>0:
pdb = pdb[COLS]
pdb['Source'] = 'PDB'
else:
pdb = pd.DataFrame()
if len(swiss) > 0:
swiss = swiss[COLS]
swiss['Source'] = 'SWISS-Model'
else:
swiss = pd.DataFrame()
if len(modbase) > 0:
modbase = modbase[COLS]
modbase['Source'] = 'Modbase'
else:
modbase = pd.DataFrame()
# st.write('======PDB==========')
# st.write(pdb.to_string())
# st.write('======SWISS==========')
# st.write(swiss.to_string())
# st.write('======MODBASE==========')
# st.write(modbase.to_string())
allData = pd.concat([pdb, swiss, modbase])
allData.reset_index(inplace=True, drop=True)
allData.replace({np.NaN: ''}, inplace=True)
# st.write('======ALL DATA==========')
# st.write(allData.to_string())
if len(allData)>0:
allData.distance.replace({-1000: ''}, inplace=True)
# Get interface positions from ECLAIR. Download HQ human
print()
print('Assigning surface regions...')
print('------------------------------------\n')
print('Extracting interface residues...\n')
data_interface = pd.read_csv(path_to_interfaces, sep='\t')
positions = get_interface_positions(data_interface, 'P1', 'P2')
interface_dataframe = pd.DataFrame()
for key, val in positions.items():
k = pd.Series((key, str(list(set(val)))))
interface_dataframe = interface_dataframe.append(k, ignore_index=True)
interface_dataframe.columns = ['uniprotID', 'positions']
final_data = finalTouch(allData)
final_data = final_data.merge(interface_dataframe, on='uniprotID', how='left')
final_data.positions = final_data.positions.astype('str')
for i in final_data.index:
if (str(final_data.at[i, 'pos']) in final_data.at[i, 'positions']) and final_data.at[i, 'trsh4'] == 'surface':
final_data.at[i, 'threeState_trsh4_HQ'] = 'interface'
elif (str(final_data.at[i, 'pos']) not in final_data.at[i, 'positions']) and final_data.at[i, 'trsh4'] == 'surface':
final_data.at[i, 'threeState_trsh4_HQ'] = 'surface'
elif (str(final_data.at[i, 'pos']) not in final_data.at[i, 'positions']) and final_data.at[i, 'trsh4'] == 'core':
final_data.at[i, 'threeState_trsh4_HQ'] = 'core'
elif (str(final_data.at[i, 'pos']) in final_data.at[i, 'positions']) and final_data.at[i, 'trsh4'] == 'core':
final_data.at[i, 'threeState_trsh4_HQ'] = 'conflict'
elif final_data.at[i, 'trsh4'] == 'nan':
final_data.at[i, 'threeState_trsh4_HQ'] = 'nan'
final_data.drop(['positions'], axis=1, inplace=True)
fisherResult = pd.read_csv(fisher_path, sep='\t')
significant_domains = fisherResult.domain.to_list()
for i in final_data.index:
if final_data.at[i, 'domain'] in significant_domains:
final_data.at[i, 'domain_fisher'] = final_data.at[i, 'domain']
else:
final_data.at[i, 'domain_fisher'] = 'NULL'
print('Final adjustments are being done...\n')
binaryCols = UNIPROT_ANNOTATION_COLS[-30:]
final_data = final_data.astype(str)
final_data.replace({'NaN': 'nan'}, inplace=True)
for i in final_data.index:
for j in binaryCols:
final_data[j] = final_data[j].astype('str')
if (final_data.at[i, j] == '0') or (final_data.at[i, j] == '0.0'):
final_data.at[i, j] = '1'
elif final_data.at[i, j] == 'nan':
final_data.at[i, j] = '0'
elif (final_data.at[i, j] == '1') or (final_data.at[i, j] == '1.0'):
final_data.at[i, j] = '2'
annotCols = UNIPROT_ANNOTATION_COLS[:30]
for i in final_data.index:
for annot in annotCols:
binaryName = str(annot) + 'Binary'
if final_data.at[i, binaryName] == '2':
final_data.at[i, annot] = '0.0'
final_data.rename(
columns={'uniprotID': 'prot_uniprotAcc', 'wt': 'wt_residue', 'pos': 'position', 'mut': 'mut_residue',
'datapoint': 'meta_merged', 'datapoint_disease': 'meta-lab_merged', 'label': 'source_db',
'family': 'prot_family', 'domain': 'domains_all', 'domain_fisher': 'domains_sig',
'distance': 'domains_3Ddist', 'threeState_trsh4_HQ': 'location_3state',
'disulfideBinary': 'disulfide_bin', 'intMetBinary': 'intMet_bin',
'intramembraneBinary': 'intramembrane_bin',
'naturalVariantBinary': 'naturalVariant_bin', 'dnaBindingBinary': 'dnaBinding_bin',
'activeSiteBinary': 'activeSite_bin',
'nucleotideBindingBinary': 'nucleotideBinding_bin', 'lipidationBinary': 'lipidation_bin',
'siteBinary': 'site_bin',
'transmembraneBinary': 'transmembrane_bin', 'crosslinkBinary': 'crosslink_bin',
'mutagenesisBinary': 'mutagenesis_bin',
'strandBinary': 'strand_bin', 'helixBinary': 'helix_bin', 'turnBinary': 'turn_bin',
'metalBindingBinary': 'metalBinding_bin',
'repeatBinary': 'repeat_bin', 'topologicalDomainBinary': 'topologicalDomain_bin',
'caBindingBinary': 'caBinding_bin',
'bindingSiteBinary': 'bindingSite_bin', 'regionBinary': 'region_bin',
'signalPeptideBinary': 'signalPeptide_bin',
'modifiedResidueBinary': 'modifiedResidue_bin', 'zincFingerBinary': 'zincFinger_bin',
'motifBinary': 'motif_bin',
'coiledCoilBinary': 'coiledCoil_bin', 'peptideBinary': 'peptide_bin',
'transitPeptideBinary': 'transitPeptide_bin',
'glycosylationBinary': 'glycosylation_bin', 'propeptideBinary': 'propeptide_bin',
'disulfide': 'disulfide_dist', 'intMet': 'intMet_dist',
'intramembrane': 'intramembrane_dist', 'naturalVariant': 'naturalVariant_dist',
'dnaBinding': 'dnaBinding_dist', 'activeSite': 'activeSite_dist',
'nucleotideBinding': 'nucleotideBinding_dist', 'lipidation': 'lipidation_dist',
'site': 'site_dist',
'transmembrane': 'transmembrane_dist', 'crosslink': 'crosslink_dist',
'mutagenesis': 'mutagenesis_dist', 'strand': 'strand_dist', 'helix': 'helix_dist',
'turn': 'turn_dist',
'metalBinding': 'metalBinding_dist', 'repeat': 'repeat_dist',
'topologicalDomain': 'topologicalDomain_dist', 'caBinding': 'caBinding_dist',
'bindingSite': 'bindingSite_dist', 'region': 'region_dist',
'signalPeptide': 'signalPeptide_dist', 'modifiedResidue': 'modifiedResidue_dist',
'zincFinger': 'zincFinger_dist', 'motif': 'motif_dist', 'coiledCoil': 'coiledCoil_dist',
'peptide': 'peptide_dist', 'transitPeptide': 'transitPeptide_dist',
'glycosylation': 'glycosylation_dist', 'propeptide': 'propeptide_dist'}, inplace=True)
final_data = final_data[
['prot_uniprotAcc', 'wt_residue', 'mut_residue', 'position','Source', 'meta_merged', 'composition', 'polarity',
'volume',
'granthamScore', 'domains_all',
'domains_sig', 'domains_3Ddist', 'sasa', 'location_3state', 'disulfide_bin', 'intMet_bin',
'intramembrane_bin', 'naturalVariant_bin', 'dnaBinding_bin',
'activeSite_bin', 'nucleotideBinding_bin', 'lipidation_bin', 'site_bin',
'transmembrane_bin', 'crosslink_bin', 'mutagenesis_bin', 'strand_bin',
'helix_bin', 'turn_bin', 'metalBinding_bin', 'repeat_bin',
'caBinding_bin', 'topologicalDomain_bin', 'bindingSite_bin',
'region_bin', 'signalPeptide_bin', 'modifiedResidue_bin',
'zincFinger_bin', 'motif_bin', 'coiledCoil_bin', 'peptide_bin',
'transitPeptide_bin', 'glycosylation_bin', 'propeptide_bin', 'disulfide_dist', 'intMet_dist',
'intramembrane_dist',
'naturalVariant_dist', 'dnaBinding_dist', 'activeSite_dist',
'nucleotideBinding_dist', 'lipidation_dist', 'site_dist',
'transmembrane_dist', 'crosslink_dist', 'mutagenesis_dist',
'strand_dist', 'helix_dist', 'turn_dist', 'metalBinding_dist',
'repeat_dist', 'caBinding_dist', 'topologicalDomain_dist',
'bindingSite_dist', 'region_dist', 'signalPeptide_dist',
'modifiedResidue_dist', 'zincFinger_dist', 'motif_dist',
'coiledCoil_dist', 'peptide_dist', 'transitPeptide_dist',
'glycosylation_dist', 'propeptide_dist']]
# Imputation
if (impute == 'True') or (impute == 'true') or (impute == True):
filler = [17.84, 30.8, 24.96, 13.12, 23.62, 18.97, 20.87, 29.59, 20.7, 12.7, 22.85, 17.21, 9.8, 9, 15.99,
16.82,
20.46, 24.58, 9.99, 17.43, 20.08, 30.91, 20.86, 22.14, 21.91, 28.45, 17.81, 25.12, 20.33, 22.36]
col_index = 0
for col_ in final_data.columns[-30:]:
final_data[col_] = final_data[col_].fillna(filler[col_index])
final_data[col_] = final_data[col_].replace({'nan': filler[col_index]})
col_index += 1
final_data['domains_3Ddist'] = final_data['domains_3Ddist'].fillna(24.5)
final_data['sasa'] = final_data['sasa'].fillna(29.5)
final_data['location_3state'] = final_data['location_3state'].fillna('unknown')
elif (impute == 'False') or (impute == 'false'):
pass
final_data = final_data.replace({'nan': np.NaN})
final_data.domains_all = final_data.domains_all.replace({-1: 'NULL'})
# ready.to_csv(path_to_output_files / 'featurevector_pdb.txt', sep='\t', index=False)
if len(final_data) == 0:
print(
'No feature vector could be produced for input data. Please check the presence of a structure for the input proteins.')
final_data.to_csv(path_to_output_files / 'featurevector_pdb.txt', sep='\t', index=False)
print('Feature vector successfully created...')
end = timer()
hours, rem = divmod(end - start, 3600)
minutes, seconds = divmod(rem, 60)
print("Time passed: {:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds))
if len(no_modbase_models_updated) >0 and (len(no_modbase_models_updated) !=org_len):
st.write(f'{len(no_modbase_models_updated)} of {org_len} datapoins could not be mapped to any structures.')
st.write(f'{org_len-len(no_modbase_models_updated)} of {org_len} datapoins were mapped to a structure.')
elif len(no_modbase_models_updated) == org_len:
st.write(f'0 of {org_len} datapoins could not be mapped to any structures. Feature vector could not be created.')
return final_data
elif len(no_modbase_models_updated) >0 and (len(no_modbase_models_updated) !=org_len):
st.write(f'{len(no_modbase_models_updated)} of {org_len} datapoins could not be mapped to any structures.')
st.write(f'{org_len-len(no_modbase_models_updated)} of {org_len} datapoins were mapped to a structure.')
elif len(no_modbase_models_updated) == org_len:
st.write(f'0 of {org_len} datapoins could not be mapped to any structures. Feature vector could not be created.')
|