fatmacankara commited on
Commit
37bff71
·
1 Parent(s): e7a3b62

Update code/alphafold_featureVector.py

Browse files
Files changed (1) hide show
  1. code/alphafold_featureVector.py +6 -0
code/alphafold_featureVector.py CHANGED
@@ -195,6 +195,8 @@ def alphafold(input_set, mode, impute):
195
  model_count[k] = int(v / 2) # two types of files for each file.
196
  data_updated = pd.DataFrame(columns = data.columns)
197
  new_ind =0
 
 
198
  for i in data.index:
199
  uniprotID = data.at[i, 'uniprotID']
200
  datapoint = data.at[i, 'datapoint']
@@ -251,6 +253,8 @@ def alphafold(input_set, mode, impute):
251
  data_updated.at[new_ind, 'distance'] = domainDistanceModels(domStart, domEnd, coordinates, varPos)
252
  for col in UNIPROT_ANNOTATION_COLS[0:30]:
253
  allDist = []
 
 
254
  if (data.at[i, col] != np.NaN) & (data.at[i, col] != 'hit') & (data.at[i, col] != '[]') & (
255
  data.at[i, col] != []):
256
  annots_list = ast.literal_eval(data.at[i, col])
@@ -272,6 +276,8 @@ def alphafold(input_set, mode, impute):
272
  data_updated.at[new_ind, col] = np.NaN
273
 
274
  new_ind +=1
 
 
275
  data_updated = selectMaxAnnot(data_updated)
276
  data_updated = data_updated.sort_values(['hitTotal', 'annotTotal'], ascending = [False, True])
277
  data_updated = data_updated.drop_duplicates(['datapoint'])
 
195
  model_count[k] = int(v / 2) # two types of files for each file.
196
  data_updated = pd.DataFrame(columns = data.columns)
197
  new_ind =0
198
+ st.write('DATA')
199
+ st.write(data)
200
  for i in data.index:
201
  uniprotID = data.at[i, 'uniprotID']
202
  datapoint = data.at[i, 'datapoint']
 
253
  data_updated.at[new_ind, 'distance'] = domainDistanceModels(domStart, domEnd, coordinates, varPos)
254
  for col in UNIPROT_ANNOTATION_COLS[0:30]:
255
  allDist = []
256
+ st.write('FOR EACH COL')
257
+ st.write(col, data.at[i, col])
258
  if (data.at[i, col] != np.NaN) & (data.at[i, col] != 'hit') & (data.at[i, col] != '[]') & (
259
  data.at[i, col] != []):
260
  annots_list = ast.literal_eval(data.at[i, col])
 
276
  data_updated.at[new_ind, col] = np.NaN
277
 
278
  new_ind +=1
279
+ st.write('data_updated')
280
+ st.write(data_updated)
281
  data_updated = selectMaxAnnot(data_updated)
282
  data_updated = data_updated.sort_values(['hitTotal', 'annotTotal'], ascending = [False, True])
283
  data_updated = data_updated.drop_duplicates(['datapoint'])