Spaces:
Running
Running
Commit
·
b24bdaf
1
Parent(s):
8b0bef9
Create modbaseModelAdd.py
Browse files- code/modbaseModelAdd.py +131 -0
code/modbaseModelAdd.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from utils import *
|
5 |
+
from pathlib import Path
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
from add_sasa import *
|
8 |
+
def addModbaseModels(dataframe, path_to_input_files, path_to_output_files):
|
9 |
+
if len(dataframe) != 0:
|
10 |
+
# GET MODBASE MODELS
|
11 |
+
# Get IDs from data to retrieve only their models from MODBASE
|
12 |
+
dataframe.reset_index(inplace=True, drop=True)
|
13 |
+
|
14 |
+
existing_modbase_models = list(Path(path_to_output_files / 'modbase_structures').glob("*"))
|
15 |
+
existing_modbase_models = [str(i) for i in existing_modbase_models]
|
16 |
+
existing_modbase_models = [i.split('/')[-1].split('.')[0] for i in existing_modbase_models]
|
17 |
+
|
18 |
+
existing_modbase_models_ind = list(Path(path_to_output_files / 'modbase_structures_individual').glob("*"))
|
19 |
+
existing_modbase_models_ind = [str(i) for i in existing_modbase_models_ind]
|
20 |
+
existing_modbase_models_ind = [i.split('/')[-1].split('.')[0] for i in existing_modbase_models_ind]
|
21 |
+
|
22 |
+
modbase_reduced = pd.DataFrame(columns = ['uniprotID', 'target_begin', 'target_end', 'quality_score',
|
23 |
+
'model_id', 'coordinates','AAonPDB', 'coordVAR'])
|
24 |
+
print('Retrieving ModBase models...\n')
|
25 |
+
modbase = pd.DataFrame(
|
26 |
+
columns=['uniprotID', 'target_begin', 'target_end', 'quality_score', 'model_id',
|
27 |
+
'coordinates', 'AAonPDB', 'coordVAR'])
|
28 |
+
no_modbase = pd.DataFrame(
|
29 |
+
columns=['uniprotID', 'target_begin', 'target_end', 'quality_score', 'model_id',
|
30 |
+
'coordinates', 'AAonPDB', 'coordVAR'])
|
31 |
+
# Get model files associated with each UniProtID
|
32 |
+
existing_free_sasa = list(Path(path_to_output_files / 'freesasa_files').glob("*"))
|
33 |
+
existing_free_sasa = [str(i) for i in existing_free_sasa]
|
34 |
+
existing_free_sasa = [i.split('/')[-1].split('.')[0] for i in existing_free_sasa]
|
35 |
+
for i in dataframe.index:
|
36 |
+
coordDict = {}
|
37 |
+
protein = dataframe.at[i, 'uniprotID']
|
38 |
+
varPos = int(dataframe.at[i, 'pos'])
|
39 |
+
wt = dataframe.at[i, 'wt']
|
40 |
+
if protein not in existing_modbase_models:
|
41 |
+
print('Downloading Modbase models for ', protein)
|
42 |
+
url = 'https://salilab.org/modbase/retrieve/modbase/?databaseID=' + protein
|
43 |
+
req = requests.get(url)
|
44 |
+
name = path_to_output_files / 'modbase_structures' / f'{protein}.txt'
|
45 |
+
with open(name, 'wb') as f:
|
46 |
+
f.write(req.content)
|
47 |
+
else:
|
48 |
+
print('Model exists for', protein)
|
49 |
+
name = Path(path_to_output_files / 'modbase_structures' / f'{protein}.txt')
|
50 |
+
|
51 |
+
with open(name, encoding="utf8") as f:
|
52 |
+
a = open(name, 'r').read()
|
53 |
+
soup = BeautifulSoup(a, 'lxml')
|
54 |
+
if soup.findAll('pdbfile') != []:
|
55 |
+
for pdb in soup.findAll('pdbfile'):
|
56 |
+
model_id = str(pdb.contents[1])[10:-11]
|
57 |
+
if model_id not in existing_modbase_models_ind:
|
58 |
+
with open(path_to_output_files / 'modbase_structures_individual' / f'{model_id}.txt', 'w', encoding="utf8") as individual:
|
59 |
+
individual.write(str('UniProt ID: ' + protein))
|
60 |
+
individual.write('\n')
|
61 |
+
individual.write(str(pdb.contents[3])[10:-11].strip())
|
62 |
+
run_freesasa(
|
63 |
+
Path(path_to_output_files / 'modbase_structures_individual' / f'{model_id.lower()}.txt'),
|
64 |
+
Path(path_to_output_files / 'freesasa_files' / f'{model_id.lower()}.txt'),
|
65 |
+
include_hetatms=True,
|
66 |
+
outdir=None, force_rerun=False, file_type='pdb')
|
67 |
+
filename = Path(path_to_output_files / 'freesasa_files' / f'{model_id.lower()}.txt')
|
68 |
+
dataframe.loc[i, 'sasa'] = sasa(protein, varPos, wt, 1, filename, path_to_output_files, file_type='pdb')
|
69 |
+
with open(path_to_output_files / 'modbase_structures_individual'/ f'{model_id}.txt', encoding="utf8") as m:
|
70 |
+
|
71 |
+
lines = m.readlines()
|
72 |
+
quality_score = -999
|
73 |
+
for ind_line in lines:
|
74 |
+
if ind_line[0:10] == 'UniProt ID':
|
75 |
+
uniprot_id = ind_line.split(':')[1].strip()
|
76 |
+
if ind_line[0:23] == 'REMARK 220 TARGET BEGIN':
|
77 |
+
target_begin = ind_line[40:43].strip()
|
78 |
+
if ind_line[0:21] == 'REMARK 220 TARGET END':
|
79 |
+
target_end = ind_line[40:43].strip()
|
80 |
+
coordDict, AAonPDB, coordVAR = {},np.NaN,np.NaN
|
81 |
+
if (int(varPos) > int(target_begin)) & (int(varPos) < int(target_end)):
|
82 |
+
coordDict = {}
|
83 |
+
for ind_line in lines:
|
84 |
+
if ind_line[0:27] == 'REMARK 220 MODPIPE MODEL ID':
|
85 |
+
model_id = ind_line[40:].strip()
|
86 |
+
if ind_line[0:15].strip() == 'REMARK 220 MPQS':
|
87 |
+
quality_score = ind_line[40:].strip()
|
88 |
+
if ind_line[0:4] == 'ATOM' and ind_line[13:15] == 'CA':
|
89 |
+
position = int(ind_line[22:26].strip())
|
90 |
+
chain = ind_line[20:22].strip()
|
91 |
+
aminoacid = threeToOne(ind_line[17:20])
|
92 |
+
coords = [ind_line[31:38].strip(), ind_line[39:46].strip(), ind_line[47:54].strip()]
|
93 |
+
coordDict[position] = coords
|
94 |
+
if position == int(varPos):
|
95 |
+
AAonPDB = aminoacid
|
96 |
+
coordVAR = str(coords)
|
97 |
+
if ind_line[0:3] == 'TER':
|
98 |
+
break
|
99 |
+
try:
|
100 |
+
k = pd.Series(
|
101 |
+
[uniprot_id, target_begin, target_end,quality_score, model_id, coordDict, AAonPDB, coordVAR])
|
102 |
+
new_row = {'uniprotID': uniprot_id, 'target_begin': target_begin,
|
103 |
+
'target_end': target_end, 'quality_score': quality_score,
|
104 |
+
'model_id': model_id, 'coordinates': coordDict,
|
105 |
+
'AAonPDB': AAonPDB, 'coordVAR': coordVAR}
|
106 |
+
modbase_reduced = modbase_reduced.append(new_row, ignore_index=True)
|
107 |
+
modbase_reduced = modbase_reduced[['uniprotID', 'quality_score', 'model_id', 'coordinates', 'AAonPDB', 'coordVAR']]
|
108 |
+
modbase = dataframe.merge(modbase_reduced, on='uniprotID', how='left')
|
109 |
+
modbase.quality_score = modbase.quality_score.astype(float)
|
110 |
+
modbase = modbase.sort_values(by=['datapoint', 'quality_score'], ascending=False)
|
111 |
+
modbase.reset_index(inplace=True, drop=True)
|
112 |
+
modbase.fillna(np.NaN, inplace=True)
|
113 |
+
modbase.replace({'\'?\', ': '',
|
114 |
+
', \'?\'': '',
|
115 |
+
'(': '', ')': '',
|
116 |
+
'[\'?\']': np.NaN,
|
117 |
+
'[]': np.NaN,
|
118 |
+
'nan-nan': np.NaN,
|
119 |
+
'': np.NaN}, inplace=True)
|
120 |
+
except NameError:
|
121 |
+
print('This file doesnt have Quality Score. Replacer: -999', model_id)
|
122 |
+
else:
|
123 |
+
k = pd.Series(
|
124 |
+
dataframe.loc[i])
|
125 |
+
no_modbase = no_modbase.append(k, ignore_index=True)
|
126 |
+
|
127 |
+
no_modbase_no_Coord = modbase[pd.isna(modbase['coordVAR'])]
|
128 |
+
no_modbase = pd.concat([no_modbase, no_modbase_no_Coord])
|
129 |
+
modbase = modbase[~pd.isna(modbase['coordVAR'])]
|
130 |
+
|
131 |
+
return modbase, no_modbase
|