File size: 7,865 Bytes
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace5f83
 
 
 
 
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace5f83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers import TransformerEncoder, TransformerDecoder

class Generator(nn.Module):
    """Generator network."""
    def __init__(self, z_dim, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio, submodel):
        super(Generator, self).__init__()
        
        self.submodel = submodel
        self.vertexes = vertexes
        self.edges = edges
        self.nodes = nodes
        self.depth = depth
        self.dim = dim
        self.heads = heads
        self.mlp_ratio = mlp_ratio
  
        self.dropout = dropout
        self.z_dim = z_dim

        if act == "relu":
            act = nn.ReLU()
        elif act == "leaky":
            act = nn.LeakyReLU()
        elif act == "sigmoid":
            act = nn.Sigmoid()
        elif act == "tanh":
            act = nn.Tanh()
        self.features = vertexes * vertexes * edges + vertexes * nodes
        self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
        self.pos_enc_dim = 5
        #self.pos_enc = nn.Linear(self.pos_enc_dim, self.dim)
        
        self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
        self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
        
        self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
                                                                    mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)         

        self.readout_e = nn.Linear(self.dim, edges)
        self.readout_n = nn.Linear(self.dim, nodes)
        self.softmax = nn.Softmax(dim = -1)
        
    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask
    
    def laplacian_positional_enc(self, adj):
        
        A = adj
        D = torch.diag(torch.count_nonzero(A, dim=-1))
        L = torch.eye(A.shape[0], device=A.device) - D * A * D
        
        EigVal, EigVec = torch.linalg.eig(L)
    
        idx = torch.argsort(torch.real(EigVal))
        EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
        pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
        
        return pos_enc

    def forward(self, z_e, z_n):
        b, n, c = z_n.shape
        _, _, _ , d = z_e.shape
        #random_mask_e = torch.randint(low=0,high=2,size=(b,n,n,d)).to(z_e.device).float()
        #random_mask_n = torch.randint(low=0,high=2,size=(b,n,c)).to(z_n.device).float()
        #z_e = F.relu(z_e - random_mask_e)
        #z_n = F.relu(z_n - random_mask_n)

        #mask = self._generate_square_subsequent_mask(self.vertexes).to(z_e.device)
        
        node = self.node_layers(z_n)
        
        edge = self.edge_layers(z_e)
        
        edge = (edge + edge.permute(0,2,1,3))/2
        
        #lap = [self.laplacian_positional_enc(torch.max(x,-1)[1]) for x in edge]
        
        #lap = torch.stack(lap).to(node.device)
        
        #pos_enc = self.pos_enc(lap)
        
        #node = node + pos_enc
        
        node, edge = self.TransformerEncoder(node,edge)

        node_sample = self.softmax(self.readout_n(node))
        
        edge_sample = self.softmax(self.readout_e(edge))
        
        return node, edge, node_sample, edge_sample
     
     
     
class Generator2(nn.Module):
    def __init__(self, dim, dec_dim, depth, heads, mlp_ratio, drop_rate, drugs_m_dim, drugs_b_dim, submodel):
        super().__init__()
        self.submodel = submodel
        self.depth = depth
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.heads = heads
        self.dropout_rate = drop_rate
        self.drugs_m_dim = drugs_m_dim
        self.drugs_b_dim = drugs_b_dim

        self.pos_enc_dim = 5
        
     
        if self.submodel == "Prot":
            self.prot_n = torch.nn.Linear(3822, 45)   ## exact dimension of protein features
            self.prot_e = torch.nn.Linear(298116, 2025) ## exact dimension of protein features
        
            self.protn_dim = torch.nn.Linear(1, dec_dim)
            self.prote_dim = torch.nn.Linear(1, dec_dim)
            
            
        self.mol_nodes = nn.Linear(dim, dec_dim)
        self.mol_edges = nn.Linear(dim, dec_dim)
        
        self.drug_nodes =  nn.Linear(self.drugs_m_dim, dec_dim)
        self.drug_edges =  nn.Linear(self.drugs_b_dim, dec_dim)
        
        self.TransformerDecoder = TransformerDecoder(dec_dim, depth, heads, mlp_ratio, drop_rate=self.dropout_rate)

        self.nodes_output_layer = nn.Linear(dec_dim, self.drugs_m_dim)
        self.edges_output_layer = nn.Linear(dec_dim, self.drugs_b_dim)
        self.softmax = nn.Softmax(dim=-1)
        
    def laplacian_positional_enc(self, adj):
        
        A = adj
        D = torch.diag(torch.count_nonzero(A, dim=-1))
        L = torch.eye(A.shape[0], device=A.device) - D * A * D
        
        EigVal, EigVec = torch.linalg.eig(L)
    
        idx = torch.argsort(torch.real(EigVal))
        EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
        pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
        
        return pos_enc
    
    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask
    
    def forward(self, edges_logits, nodes_logits ,akt1_adj,akt1_annot):
        
        edges_logits = self.mol_edges(edges_logits)
        nodes_logits = self.mol_nodes(nodes_logits)
        
        if self.submodel != "Prot":
            akt1_annot = self.drug_nodes(akt1_annot)
            akt1_adj = self.drug_edges(akt1_adj)
         
        else:
            akt1_adj = self.prote_dim(self.prot_e(akt1_adj).view(1,45,45,1))
            akt1_annot = self.protn_dim(self.prot_n(akt1_annot).view(1,45,1))       


        #lap = [self.laplacian_positional_enc(torch.max(x,-1)[1]) for x in drug_e]
        #lap = torch.stack(lap).to(drug_e.device)
        #pos_enc = self.pos_enc(lap)
        #drug_n = drug_n + pos_enc
                
        if self.submodel == "Ligand" or self.submodel == "RL" :
            nodes_logits,akt1_annot, edges_logits, akt1_adj = self.TransformerDecoder(akt1_annot,nodes_logits,akt1_adj,edges_logits)   

        else: 
            nodes_logits,akt1_annot, edges_logits, akt1_adj = self.TransformerDecoder(nodes_logits,akt1_annot,edges_logits,akt1_adj)
     
        edges_logits = self.edges_output_layer(edges_logits)
        nodes_logits = self.nodes_output_layer(nodes_logits)
        
        edges_logits = self.softmax(edges_logits)
        nodes_logits = self.softmax(nodes_logits)
 
        return edges_logits, nodes_logits


class simple_disc(nn.Module):
    def __init__(self, act, m_dim, vertexes, b_dim):
        super().__init__()
        if act == "relu":
            act = nn.ReLU()
        elif act == "leaky":
            act = nn.LeakyReLU()
        elif act == "sigmoid":
            act = nn.Sigmoid()
        elif act == "tanh":
            act = nn.Tanh()  
        features = vertexes * m_dim + vertexes * vertexes * b_dim 
        
        self.predictor = nn.Sequential(nn.Linear(features,256), act, nn.Linear(256,128), act, nn.Linear(128,64), act,
                                       nn.Linear(64,32), act, nn.Linear(32,16), act,
                                       nn.Linear(16,1))
    
    def forward(self, x):
        
        prediction = self.predictor(x)
        
        #prediction = F.softmax(prediction,dim=-1)
        
        return prediction