Spaces:
Running
Running
File size: 7,865 Bytes
1a3cfaf ace5f83 1a3cfaf ace5f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers import TransformerEncoder, TransformerDecoder
class Generator(nn.Module):
"""Generator network."""
def __init__(self, z_dim, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio, submodel):
super(Generator, self).__init__()
self.submodel = submodel
self.vertexes = vertexes
self.edges = edges
self.nodes = nodes
self.depth = depth
self.dim = dim
self.heads = heads
self.mlp_ratio = mlp_ratio
self.dropout = dropout
self.z_dim = z_dim
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
self.features = vertexes * vertexes * edges + vertexes * nodes
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
self.pos_enc_dim = 5
#self.pos_enc = nn.Linear(self.pos_enc_dim, self.dim)
self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)
self.readout_e = nn.Linear(self.dim, edges)
self.readout_n = nn.Linear(self.dim, nodes)
self.softmax = nn.Softmax(dim = -1)
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def laplacian_positional_enc(self, adj):
A = adj
D = torch.diag(torch.count_nonzero(A, dim=-1))
L = torch.eye(A.shape[0], device=A.device) - D * A * D
EigVal, EigVec = torch.linalg.eig(L)
idx = torch.argsort(torch.real(EigVal))
EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
return pos_enc
def forward(self, z_e, z_n):
b, n, c = z_n.shape
_, _, _ , d = z_e.shape
#random_mask_e = torch.randint(low=0,high=2,size=(b,n,n,d)).to(z_e.device).float()
#random_mask_n = torch.randint(low=0,high=2,size=(b,n,c)).to(z_n.device).float()
#z_e = F.relu(z_e - random_mask_e)
#z_n = F.relu(z_n - random_mask_n)
#mask = self._generate_square_subsequent_mask(self.vertexes).to(z_e.device)
node = self.node_layers(z_n)
edge = self.edge_layers(z_e)
edge = (edge + edge.permute(0,2,1,3))/2
#lap = [self.laplacian_positional_enc(torch.max(x,-1)[1]) for x in edge]
#lap = torch.stack(lap).to(node.device)
#pos_enc = self.pos_enc(lap)
#node = node + pos_enc
node, edge = self.TransformerEncoder(node,edge)
node_sample = self.softmax(self.readout_n(node))
edge_sample = self.softmax(self.readout_e(edge))
return node, edge, node_sample, edge_sample
class Generator2(nn.Module):
def __init__(self, dim, dec_dim, depth, heads, mlp_ratio, drop_rate, drugs_m_dim, drugs_b_dim, submodel):
super().__init__()
self.submodel = submodel
self.depth = depth
self.dim = dim
self.mlp_ratio = mlp_ratio
self.heads = heads
self.dropout_rate = drop_rate
self.drugs_m_dim = drugs_m_dim
self.drugs_b_dim = drugs_b_dim
self.pos_enc_dim = 5
if self.submodel == "Prot":
self.prot_n = torch.nn.Linear(3822, 45) ## exact dimension of protein features
self.prot_e = torch.nn.Linear(298116, 2025) ## exact dimension of protein features
self.protn_dim = torch.nn.Linear(1, dec_dim)
self.prote_dim = torch.nn.Linear(1, dec_dim)
self.mol_nodes = nn.Linear(dim, dec_dim)
self.mol_edges = nn.Linear(dim, dec_dim)
self.drug_nodes = nn.Linear(self.drugs_m_dim, dec_dim)
self.drug_edges = nn.Linear(self.drugs_b_dim, dec_dim)
self.TransformerDecoder = TransformerDecoder(dec_dim, depth, heads, mlp_ratio, drop_rate=self.dropout_rate)
self.nodes_output_layer = nn.Linear(dec_dim, self.drugs_m_dim)
self.edges_output_layer = nn.Linear(dec_dim, self.drugs_b_dim)
self.softmax = nn.Softmax(dim=-1)
def laplacian_positional_enc(self, adj):
A = adj
D = torch.diag(torch.count_nonzero(A, dim=-1))
L = torch.eye(A.shape[0], device=A.device) - D * A * D
EigVal, EigVec = torch.linalg.eig(L)
idx = torch.argsort(torch.real(EigVal))
EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
return pos_enc
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, edges_logits, nodes_logits ,akt1_adj,akt1_annot):
edges_logits = self.mol_edges(edges_logits)
nodes_logits = self.mol_nodes(nodes_logits)
if self.submodel != "Prot":
akt1_annot = self.drug_nodes(akt1_annot)
akt1_adj = self.drug_edges(akt1_adj)
else:
akt1_adj = self.prote_dim(self.prot_e(akt1_adj).view(1,45,45,1))
akt1_annot = self.protn_dim(self.prot_n(akt1_annot).view(1,45,1))
#lap = [self.laplacian_positional_enc(torch.max(x,-1)[1]) for x in drug_e]
#lap = torch.stack(lap).to(drug_e.device)
#pos_enc = self.pos_enc(lap)
#drug_n = drug_n + pos_enc
if self.submodel == "Ligand" or self.submodel == "RL" :
nodes_logits,akt1_annot, edges_logits, akt1_adj = self.TransformerDecoder(akt1_annot,nodes_logits,akt1_adj,edges_logits)
else:
nodes_logits,akt1_annot, edges_logits, akt1_adj = self.TransformerDecoder(nodes_logits,akt1_annot,edges_logits,akt1_adj)
edges_logits = self.edges_output_layer(edges_logits)
nodes_logits = self.nodes_output_layer(nodes_logits)
edges_logits = self.softmax(edges_logits)
nodes_logits = self.softmax(nodes_logits)
return edges_logits, nodes_logits
class simple_disc(nn.Module):
def __init__(self, act, m_dim, vertexes, b_dim):
super().__init__()
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
features = vertexes * m_dim + vertexes * vertexes * b_dim
self.predictor = nn.Sequential(nn.Linear(features,256), act, nn.Linear(256,128), act, nn.Linear(128,64), act,
nn.Linear(64,32), act, nn.Linear(32,16), act,
nn.Linear(16,1))
def forward(self, x):
prediction = self.predictor(x)
#prediction = F.softmax(prediction,dim=-1)
return prediction |