File size: 12,978 Bytes
4c9e6d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import os.path as osp
import re
import pickle

import numpy as np
import pandas as pd
from tqdm import tqdm

import torch
from torch_geometric.data import Data, InMemoryDataset

from rdkit import Chem, RDLogger

from src.data.utils import label2onehot

RDLogger.DisableLog('rdApp.*') 


class DruggenDataset(InMemoryDataset):
    def __init__(self, root, dataset_file, raw_files, max_atom, features, 
                 atom_encoder, atom_decoder, bond_encoder, bond_decoder,
                 transform=None, pre_transform=None, pre_filter=None):
        """
        Initialize the DruggenDataset with pre-loaded encoder/decoder dictionaries.

        Parameters:
            root (str): Root directory.
            dataset_file (str): Name of the processed dataset file.
            raw_files (str): Path to the raw SMILES file.
            max_atom (int): Maximum number of atoms allowed in a molecule.
            features (bool): Whether to include additional node features.
            atom_encoder (dict): Pre-loaded atom encoder dictionary.
            atom_decoder (dict): Pre-loaded atom decoder dictionary.
            bond_encoder (dict): Pre-loaded bond encoder dictionary.
            bond_decoder (dict): Pre-loaded bond decoder dictionary.
            transform, pre_transform, pre_filter: See PyG InMemoryDataset.
        """
        self.dataset_name = dataset_file.split(".")[0]
        self.dataset_file = dataset_file
        self.raw_files = raw_files
        self.max_atom = max_atom
        self.features = features

        # Use the provided encoder/decoder mappings.
        self.atom_encoder_m = atom_encoder
        self.atom_decoder_m = atom_decoder
        self.bond_encoder_m = bond_encoder
        self.bond_decoder_m = bond_decoder

        self.atom_num_types = len(atom_encoder)
        self.bond_num_types = len(bond_encoder)

        super().__init__(root, transform, pre_transform, pre_filter)
        path = osp.join(self.processed_dir, dataset_file)
        self.data, self.slices = torch.load(path)
        self.root = root

    @property
    def processed_dir(self):
        """
        Returns the directory where processed dataset files are stored.
        """
        return self.root
    
    @property
    def raw_file_names(self):
        """
        Returns the raw SMILES file name.
        """
        return self.raw_files

    @property
    def processed_file_names(self):
        """
        Returns the name of the processed dataset file.
        """
        return self.dataset_file

    def _filter_smiles(self, smiles_list):
        """
        Filters the input list of SMILES strings to keep only valid molecules that:
         - Can be successfully parsed,
         - Have a number of atoms less than or equal to the maximum allowed (max_atom),
         - Contain only atoms present in the atom_encoder,
         - Contain only bonds present in the bond_encoder.

        Parameters:
            smiles_list (list): List of SMILES strings.

        Returns:
            max_length (int): Maximum number of atoms found in the filtered molecules.
            filtered_smiles (list): List of valid SMILES strings.
        """
        max_length = 0
        filtered_smiles = []
        for smiles in tqdm(smiles_list, desc="Filtering SMILES"):
            mol = Chem.MolFromSmiles(smiles)
            if mol is None:
                continue

            # Check molecule size
            molecule_size = mol.GetNumAtoms()
            if molecule_size > self.max_atom:
                continue

            # Filter out molecules with atoms not in the atom_encoder
            if not all(atom.GetAtomicNum() in self.atom_encoder_m for atom in mol.GetAtoms()):
                continue

            # Filter out molecules with bonds not in the bond_encoder
            if not all(bond.GetBondType() in self.bond_encoder_m for bond in mol.GetBonds()):
                continue

            filtered_smiles.append(smiles)
            max_length = max(max_length, molecule_size)
        return max_length, filtered_smiles

    def _genA(self, mol, connected=True, max_length=None):
        """
        Generates the adjacency matrix for a molecule based on its bond structure.

        Parameters:
            mol (rdkit.Chem.Mol): The molecule.
            connected (bool): If True, ensures all atoms are connected.
            max_length (int, optional): The size of the matrix; if None, uses number of atoms in mol.

        Returns:
            np.array: Adjacency matrix with bond types as entries, or None if disconnected.
        """
        max_length = max_length if max_length is not None else mol.GetNumAtoms()
        A = np.zeros((max_length, max_length))
        begin = [b.GetBeginAtomIdx() for b in mol.GetBonds()]
        end = [b.GetEndAtomIdx() for b in mol.GetBonds()]
        bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()]
        A[begin, end] = bond_type
        A[end, begin] = bond_type
        degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1)
        return A if connected and (degree > 0).all() else None

    def _genX(self, mol, max_length=None):
        """
        Generates the feature vector for each atom in a molecule by encoding their atomic numbers.

        Parameters:
            mol (rdkit.Chem.Mol): The molecule.
            max_length (int, optional): Length of the feature vector; if None, uses number of atoms in mol.

        Returns:
            np.array: Array of atom feature indices, padded with zeros if necessary, or None on error.
        """
        max_length = max_length if max_length is not None else mol.GetNumAtoms()
        try:
            return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] +
                            [0] * (max_length - mol.GetNumAtoms()))
        except KeyError as e:
            print(f"Skipping molecule with unsupported atom: {e}")
            print(f"Skipped SMILES: {Chem.MolToSmiles(mol)}")
            return None

    def _genF(self, mol, max_length=None):
        """
        Generates additional node features for a molecule using various atomic properties.

        Parameters:
            mol (rdkit.Chem.Mol): The molecule.
            max_length (int, optional): Number of rows in the features matrix; if None, uses number of atoms.

        Returns:
            np.array: Array of additional features for each atom, padded with zeros if necessary.
        """
        max_length = max_length if max_length is not None else mol.GetNumAtoms()
        features = np.array([[*[a.GetDegree() == i for i in range(5)],
                               *[a.GetExplicitValence() == i for i in range(9)],
                               *[int(a.GetHybridization()) == i for i in range(1, 7)],
                               *[a.GetImplicitValence() == i for i in range(9)],
                               a.GetIsAromatic(),
                               a.GetNoImplicit(),
                               *[a.GetNumExplicitHs() == i for i in range(5)],
                               *[a.GetNumImplicitHs() == i for i in range(5)],
                               *[a.GetNumRadicalElectrons() == i for i in range(5)],
                               a.IsInRing(),
                               *[a.IsInRingSize(i) for i in range(2, 9)]]
                              for a in mol.GetAtoms()], dtype=np.int32)
        return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1]))))

    def decoder_load(self, dictionary_name, file):
        """
        Returns the pre-loaded decoder dictionary based on the dictionary name.

        Parameters:
            dictionary_name (str): Name of the dictionary ("atom" or "bond").
            file: Placeholder parameter for compatibility.

        Returns:
            dict: The corresponding decoder dictionary.
        """
        if dictionary_name == "atom":
            return self.atom_decoder_m
        elif dictionary_name == "bond":
            return self.bond_decoder_m
        else:
            raise ValueError("Unknown dictionary name.")

    def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None):
        """
        Converts graph representations (node labels and edge labels) back to an RDKit molecule.

        Parameters:
            node_labels (iterable): Encoded atom labels.
            edge_labels (np.array): Adjacency matrix with encoded bond types.
            strict (bool): If True, sanitizes the molecule and returns None on failure.
            file_name: Placeholder parameter for compatibility.

        Returns:
            rdkit.Chem.Mol: The resulting molecule, or None if sanitization fails.
        """
        mol = Chem.RWMol()
        for node_label in node_labels:
            mol.AddAtom(Chem.Atom(self.atom_decoder_m[node_label]))
        for start, end in zip(*np.nonzero(edge_labels)):
            if start > end:
                mol.AddBond(int(start), int(end), self.bond_decoder_m[edge_labels[start, end]])
        if strict:
            try:
                Chem.SanitizeMol(mol)
            except Exception:
                mol = None
        return mol

    def check_valency(self, mol):
        """
        Checks that no atom in the molecule has exceeded its allowed valency.

        Parameters:
            mol (rdkit.Chem.Mol): The molecule.

        Returns:
            tuple: (True, None) if valid; (False, atomid_valence) if there is a valency issue.
        """
        try:
            Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
            return True, None
        except ValueError as e:
            e = str(e)
            p = e.find('#')
            e_sub = e[p:]
            atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
            return False, atomid_valence

    def correct_mol(self, mol):
        """
        Corrects a molecule by removing bonds until all atoms satisfy their valency limits.

        Parameters:
            mol (rdkit.Chem.Mol): The molecule.

        Returns:
            rdkit.Chem.Mol: The corrected molecule.
        """
        while True:
            flag, atomid_valence = self.check_valency(mol)
            if flag:
                break
            else:
                # Expecting two numbers: atom index and its valence.
                assert len(atomid_valence) == 2
                idx = atomid_valence[0]
                queue = []
                for b in mol.GetAtomWithIdx(idx).GetBonds():
                    queue.append((b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
                queue.sort(key=lambda tup: tup[1], reverse=True)
                if queue:
                    start = queue[0][2]
                    end = queue[0][3]
                    mol.RemoveBond(start, end)
        return mol


    def process(self, size=None):
        """
        Processes the raw SMILES file by filtering and converting each valid SMILES into a PyTorch Geometric Data object.
        The resulting dataset is saved to disk.

        Parameters:
            size (optional): Placeholder parameter for compatibility.

        Side Effects:
            Saves the processed dataset as a file in the processed directory.
        """
        # Read raw SMILES from file (assuming CSV with no header)
        smiles_list = pd.read_csv(self.raw_files, header=None)[0].tolist()
        max_length, filtered_smiles = self._filter_smiles(smiles_list)
        data_list = []
        self.m_dim = len(self.atom_decoder_m)
        for smiles in tqdm(filtered_smiles, desc='Processing dataset', total=len(filtered_smiles)):
            mol = Chem.MolFromSmiles(smiles)
            A = self._genA(mol, connected=True, max_length=max_length)
            if A is not None:
                x_array = self._genX(mol, max_length=max_length)
                if x_array is None:
                    continue
                x = torch.from_numpy(x_array).to(torch.long).view(1, -1)
                x = label2onehot(x, self.m_dim).squeeze()
                if self.features:
                    f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1)
                    x = torch.concat((x, f), dim=-1)
                adjacency = torch.from_numpy(A)
                edge_index = adjacency.nonzero(as_tuple=False).t().contiguous()
                edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long)
                data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles)
                if self.pre_filter is not None and not self.pre_filter(data):
                    continue
                if self.pre_transform is not None:
                    data = self.pre_transform(data)
                data_list.append(data)
        torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file))