Spaces:
Running
Running
File size: 12,978 Bytes
4c9e6d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import os.path as osp
import re
import pickle
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch_geometric.data import Data, InMemoryDataset
from rdkit import Chem, RDLogger
from src.data.utils import label2onehot
RDLogger.DisableLog('rdApp.*')
class DruggenDataset(InMemoryDataset):
def __init__(self, root, dataset_file, raw_files, max_atom, features,
atom_encoder, atom_decoder, bond_encoder, bond_decoder,
transform=None, pre_transform=None, pre_filter=None):
"""
Initialize the DruggenDataset with pre-loaded encoder/decoder dictionaries.
Parameters:
root (str): Root directory.
dataset_file (str): Name of the processed dataset file.
raw_files (str): Path to the raw SMILES file.
max_atom (int): Maximum number of atoms allowed in a molecule.
features (bool): Whether to include additional node features.
atom_encoder (dict): Pre-loaded atom encoder dictionary.
atom_decoder (dict): Pre-loaded atom decoder dictionary.
bond_encoder (dict): Pre-loaded bond encoder dictionary.
bond_decoder (dict): Pre-loaded bond decoder dictionary.
transform, pre_transform, pre_filter: See PyG InMemoryDataset.
"""
self.dataset_name = dataset_file.split(".")[0]
self.dataset_file = dataset_file
self.raw_files = raw_files
self.max_atom = max_atom
self.features = features
# Use the provided encoder/decoder mappings.
self.atom_encoder_m = atom_encoder
self.atom_decoder_m = atom_decoder
self.bond_encoder_m = bond_encoder
self.bond_decoder_m = bond_decoder
self.atom_num_types = len(atom_encoder)
self.bond_num_types = len(bond_encoder)
super().__init__(root, transform, pre_transform, pre_filter)
path = osp.join(self.processed_dir, dataset_file)
self.data, self.slices = torch.load(path)
self.root = root
@property
def processed_dir(self):
"""
Returns the directory where processed dataset files are stored.
"""
return self.root
@property
def raw_file_names(self):
"""
Returns the raw SMILES file name.
"""
return self.raw_files
@property
def processed_file_names(self):
"""
Returns the name of the processed dataset file.
"""
return self.dataset_file
def _filter_smiles(self, smiles_list):
"""
Filters the input list of SMILES strings to keep only valid molecules that:
- Can be successfully parsed,
- Have a number of atoms less than or equal to the maximum allowed (max_atom),
- Contain only atoms present in the atom_encoder,
- Contain only bonds present in the bond_encoder.
Parameters:
smiles_list (list): List of SMILES strings.
Returns:
max_length (int): Maximum number of atoms found in the filtered molecules.
filtered_smiles (list): List of valid SMILES strings.
"""
max_length = 0
filtered_smiles = []
for smiles in tqdm(smiles_list, desc="Filtering SMILES"):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
continue
# Check molecule size
molecule_size = mol.GetNumAtoms()
if molecule_size > self.max_atom:
continue
# Filter out molecules with atoms not in the atom_encoder
if not all(atom.GetAtomicNum() in self.atom_encoder_m for atom in mol.GetAtoms()):
continue
# Filter out molecules with bonds not in the bond_encoder
if not all(bond.GetBondType() in self.bond_encoder_m for bond in mol.GetBonds()):
continue
filtered_smiles.append(smiles)
max_length = max(max_length, molecule_size)
return max_length, filtered_smiles
def _genA(self, mol, connected=True, max_length=None):
"""
Generates the adjacency matrix for a molecule based on its bond structure.
Parameters:
mol (rdkit.Chem.Mol): The molecule.
connected (bool): If True, ensures all atoms are connected.
max_length (int, optional): The size of the matrix; if None, uses number of atoms in mol.
Returns:
np.array: Adjacency matrix with bond types as entries, or None if disconnected.
"""
max_length = max_length if max_length is not None else mol.GetNumAtoms()
A = np.zeros((max_length, max_length))
begin = [b.GetBeginAtomIdx() for b in mol.GetBonds()]
end = [b.GetEndAtomIdx() for b in mol.GetBonds()]
bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()]
A[begin, end] = bond_type
A[end, begin] = bond_type
degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1)
return A if connected and (degree > 0).all() else None
def _genX(self, mol, max_length=None):
"""
Generates the feature vector for each atom in a molecule by encoding their atomic numbers.
Parameters:
mol (rdkit.Chem.Mol): The molecule.
max_length (int, optional): Length of the feature vector; if None, uses number of atoms in mol.
Returns:
np.array: Array of atom feature indices, padded with zeros if necessary, or None on error.
"""
max_length = max_length if max_length is not None else mol.GetNumAtoms()
try:
return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] +
[0] * (max_length - mol.GetNumAtoms()))
except KeyError as e:
print(f"Skipping molecule with unsupported atom: {e}")
print(f"Skipped SMILES: {Chem.MolToSmiles(mol)}")
return None
def _genF(self, mol, max_length=None):
"""
Generates additional node features for a molecule using various atomic properties.
Parameters:
mol (rdkit.Chem.Mol): The molecule.
max_length (int, optional): Number of rows in the features matrix; if None, uses number of atoms.
Returns:
np.array: Array of additional features for each atom, padded with zeros if necessary.
"""
max_length = max_length if max_length is not None else mol.GetNumAtoms()
features = np.array([[*[a.GetDegree() == i for i in range(5)],
*[a.GetExplicitValence() == i for i in range(9)],
*[int(a.GetHybridization()) == i for i in range(1, 7)],
*[a.GetImplicitValence() == i for i in range(9)],
a.GetIsAromatic(),
a.GetNoImplicit(),
*[a.GetNumExplicitHs() == i for i in range(5)],
*[a.GetNumImplicitHs() == i for i in range(5)],
*[a.GetNumRadicalElectrons() == i for i in range(5)],
a.IsInRing(),
*[a.IsInRingSize(i) for i in range(2, 9)]]
for a in mol.GetAtoms()], dtype=np.int32)
return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1]))))
def decoder_load(self, dictionary_name, file):
"""
Returns the pre-loaded decoder dictionary based on the dictionary name.
Parameters:
dictionary_name (str): Name of the dictionary ("atom" or "bond").
file: Placeholder parameter for compatibility.
Returns:
dict: The corresponding decoder dictionary.
"""
if dictionary_name == "atom":
return self.atom_decoder_m
elif dictionary_name == "bond":
return self.bond_decoder_m
else:
raise ValueError("Unknown dictionary name.")
def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None):
"""
Converts graph representations (node labels and edge labels) back to an RDKit molecule.
Parameters:
node_labels (iterable): Encoded atom labels.
edge_labels (np.array): Adjacency matrix with encoded bond types.
strict (bool): If True, sanitizes the molecule and returns None on failure.
file_name: Placeholder parameter for compatibility.
Returns:
rdkit.Chem.Mol: The resulting molecule, or None if sanitization fails.
"""
mol = Chem.RWMol()
for node_label in node_labels:
mol.AddAtom(Chem.Atom(self.atom_decoder_m[node_label]))
for start, end in zip(*np.nonzero(edge_labels)):
if start > end:
mol.AddBond(int(start), int(end), self.bond_decoder_m[edge_labels[start, end]])
if strict:
try:
Chem.SanitizeMol(mol)
except Exception:
mol = None
return mol
def check_valency(self, mol):
"""
Checks that no atom in the molecule has exceeded its allowed valency.
Parameters:
mol (rdkit.Chem.Mol): The molecule.
Returns:
tuple: (True, None) if valid; (False, atomid_valence) if there is a valency issue.
"""
try:
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
return True, None
except ValueError as e:
e = str(e)
p = e.find('#')
e_sub = e[p:]
atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
return False, atomid_valence
def correct_mol(self, mol):
"""
Corrects a molecule by removing bonds until all atoms satisfy their valency limits.
Parameters:
mol (rdkit.Chem.Mol): The molecule.
Returns:
rdkit.Chem.Mol: The corrected molecule.
"""
while True:
flag, atomid_valence = self.check_valency(mol)
if flag:
break
else:
# Expecting two numbers: atom index and its valence.
assert len(atomid_valence) == 2
idx = atomid_valence[0]
queue = []
for b in mol.GetAtomWithIdx(idx).GetBonds():
queue.append((b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
queue.sort(key=lambda tup: tup[1], reverse=True)
if queue:
start = queue[0][2]
end = queue[0][3]
mol.RemoveBond(start, end)
return mol
def process(self, size=None):
"""
Processes the raw SMILES file by filtering and converting each valid SMILES into a PyTorch Geometric Data object.
The resulting dataset is saved to disk.
Parameters:
size (optional): Placeholder parameter for compatibility.
Side Effects:
Saves the processed dataset as a file in the processed directory.
"""
# Read raw SMILES from file (assuming CSV with no header)
smiles_list = pd.read_csv(self.raw_files, header=None)[0].tolist()
max_length, filtered_smiles = self._filter_smiles(smiles_list)
data_list = []
self.m_dim = len(self.atom_decoder_m)
for smiles in tqdm(filtered_smiles, desc='Processing dataset', total=len(filtered_smiles)):
mol = Chem.MolFromSmiles(smiles)
A = self._genA(mol, connected=True, max_length=max_length)
if A is not None:
x_array = self._genX(mol, max_length=max_length)
if x_array is None:
continue
x = torch.from_numpy(x_array).to(torch.long).view(1, -1)
x = label2onehot(x, self.m_dim).squeeze()
if self.features:
f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1)
x = torch.concat((x, f), dim=-1)
adjacency = torch.from_numpy(A)
edge_index = adjacency.nonzero(as_tuple=False).t().contiguous()
edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles)
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file)) |