Spaces:
Running
Running
File size: 14,538 Bytes
1a3cfaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers import TransformerEncoder, TransformerDecoder
class Generator(nn.Module):
"""Generator network."""
def __init__(self, z_dim, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio, submodel):
super(Generator, self).__init__()
self.submodel = submodel
self.vertexes = vertexes
self.edges = edges
self.nodes = nodes
self.depth = depth
self.dim = dim
self.heads = heads
self.mlp_ratio = mlp_ratio
self.dropout = dropout
self.z_dim = z_dim
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
self.features = vertexes * vertexes * edges + vertexes * nodes
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
self.pos_enc_dim = 5
#self.pos_enc = nn.Linear(self.pos_enc_dim, self.dim)
self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64,dim), act, nn.Dropout(self.dropout))
self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)
self.readout_e = nn.Linear(self.dim, edges)
self.readout_n = nn.Linear(self.dim, nodes)
self.softmax = nn.Softmax(dim = -1)
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def laplacian_positional_enc(self, adj):
A = adj
D = torch.diag(torch.count_nonzero(A, dim=-1))
L = torch.eye(A.shape[0], device=A.device) - D * A * D
EigVal, EigVec = torch.linalg.eig(L)
idx = torch.argsort(torch.real(EigVal))
EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
return pos_enc
def forward(self, z_e, z_n):
b, n, c = z_n.shape
_, _, _ , d = z_e.shape
#random_mask_e = torch.randint(low=0,high=2,size=(b,n,n,d)).to(z_e.device).float()
#random_mask_n = torch.randint(low=0,high=2,size=(b,n,c)).to(z_n.device).float()
#z_e = F.relu(z_e - random_mask_e)
#z_n = F.relu(z_n - random_mask_n)
#mask = self._generate_square_subsequent_mask(self.vertexes).to(z_e.device)
node = self.node_layers(z_n)
edge = self.edge_layers(z_e)
edge = (edge + edge.permute(0,2,1,3))/2
#lap = [self.laplacian_positional_enc(torch.max(x,-1)[1]) for x in edge]
#lap = torch.stack(lap).to(node.device)
#pos_enc = self.pos_enc(lap)
#node = node + pos_enc
node, edge = self.TransformerEncoder(node,edge)
node_sample = self.softmax(self.readout_n(node))
edge_sample = self.softmax(self.readout_e(edge))
return node, edge, node_sample, edge_sample
class Generator2(nn.Module):
def __init__(self, dim, dec_dim, depth, heads, mlp_ratio, drop_rate, drugs_m_dim, drugs_b_dim, submodel):
super().__init__()
self.submodel = submodel
self.depth = depth
self.dim = dim
self.mlp_ratio = mlp_ratio
self.heads = heads
self.dropout_rate = drop_rate
self.drugs_m_dim = drugs_m_dim
self.drugs_b_dim = drugs_b_dim
self.pos_enc_dim = 5
if self.submodel == "Prot":
self.prot_n = torch.nn.Linear(3822, 45) ## exact dimension of protein features
self.prot_e = torch.nn.Linear(298116, 2025) ## exact dimension of protein features
self.protn_dim = torch.nn.Linear(1, dec_dim)
self.prote_dim = torch.nn.Linear(1, dec_dim)
self.mol_nodes = nn.Linear(dim, dec_dim)
self.mol_edges = nn.Linear(dim, dec_dim)
self.drug_nodes = nn.Linear(self.drugs_m_dim, dec_dim)
self.drug_edges = nn.Linear(self.drugs_b_dim, dec_dim)
self.TransformerDecoder = TransformerDecoder(dec_dim, depth, heads, mlp_ratio, drop_rate=self.dropout_rate)
self.nodes_output_layer = nn.Linear(dec_dim, self.drugs_m_dim)
self.edges_output_layer = nn.Linear(dec_dim, self.drugs_b_dim)
self.softmax = nn.Softmax(dim=-1)
def laplacian_positional_enc(self, adj):
A = adj
D = torch.diag(torch.count_nonzero(A, dim=-1))
L = torch.eye(A.shape[0], device=A.device) - D * A * D
EigVal, EigVec = torch.linalg.eig(L)
idx = torch.argsort(torch.real(EigVal))
EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
return pos_enc
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, edges_logits, nodes_logits ,akt1_adj,akt1_annot):
edges_logits = self.mol_edges(edges_logits)
nodes_logits = self.mol_nodes(nodes_logits)
if self.submodel != "Prot":
akt1_annot = self.drug_nodes(akt1_annot)
akt1_adj = self.drug_edges(akt1_adj)
else:
akt1_adj = self.prote_dim(self.prot_e(akt1_adj).view(1,45,45,1))
akt1_annot = self.protn_dim(self.prot_n(akt1_annot).view(1,45,1))
#lap = [self.laplacian_positional_enc(torch.max(x,-1)[1]) for x in drug_e]
#lap = torch.stack(lap).to(drug_e.device)
#pos_enc = self.pos_enc(lap)
#drug_n = drug_n + pos_enc
nodes_logits,akt1_annot, edges_logits, akt1_adj = self.TransformerDecoder(nodes_logits,akt1_annot,edges_logits,akt1_adj)
edges_logits = self.edges_output_layer(edges_logits)
nodes_logits = self.nodes_output_layer(nodes_logits)
edges_logits = self.softmax(edges_logits)
nodes_logits = self.softmax(nodes_logits)
return edges_logits, nodes_logits
class simple_disc(nn.Module):
def __init__(self, act, m_dim, vertexes, b_dim):
super().__init__()
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
features = vertexes * m_dim + vertexes * vertexes * b_dim
self.predictor = nn.Sequential(nn.Linear(features,256), act, nn.Linear(256,128), act, nn.Linear(128,64), act,
nn.Linear(64,32), act, nn.Linear(32,16), act,
nn.Linear(16,1))
def forward(self, x):
prediction = self.predictor(x)
#prediction = F.softmax(prediction,dim=-1)
return prediction
"""class Discriminator(nn.Module):
def __init__(self,deg,agg,sca,pna_in_ch,pna_out_ch,edge_dim,towers,pre_lay,post_lay,pna_layer_num, graph_add):
super(Discriminator, self).__init__()
self.degree = deg
self.aggregators = agg
self.scalers = sca
self.pna_in_channels = pna_in_ch
self.pna_out_channels = pna_out_ch
self.edge_dimension = edge_dim
self.towers = towers
self.pre_layers_num = pre_lay
self.post_layers_num = post_lay
self.pna_layer_num = pna_layer_num
self.graph_add = graph_add
self.PNA_layer = PNA(deg=self.degree, agg =self.aggregators,sca = self.scalers,
pna_in_ch= self.pna_in_channels, pna_out_ch = self.pna_out_channels, edge_dim = self.edge_dimension,
towers = self.towers, pre_lay = self.pre_layers_num, post_lay = self.post_layers_num,
pna_layer_num = self.pna_layer_num, graph_add = self.graph_add)
def forward(self, x, edge_index, edge_attr, batch, activation=None):
h = self.PNA_layer(x, edge_index, edge_attr, batch)
h = activation(h) if activation is not None else h
return h"""
"""class Discriminator2(nn.Module):
def __init__(self,deg,agg,sca,pna_in_ch,pna_out_ch,edge_dim,towers,pre_lay,post_lay,pna_layer_num, graph_add):
super(Discriminator2, self).__init__()
self.degree = deg
self.aggregators = agg
self.scalers = sca
self.pna_in_channels = pna_in_ch
self.pna_out_channels = pna_out_ch
self.edge_dimension = edge_dim
self.towers = towers
self.pre_layers_num = pre_lay
self.post_layers_num = post_lay
self.pna_layer_num = pna_layer_num
self.graph_add = graph_add
self.PNA_layer = PNA(deg=self.degree, agg =self.aggregators,sca = self.scalers,
pna_in_ch= self.pna_in_channels, pna_out_ch = self.pna_out_channels, edge_dim = self.edge_dimension,
towers = self.towers, pre_lay = self.pre_layers_num, post_lay = self.post_layers_num,
pna_layer_num = self.pna_layer_num, graph_add = self.graph_add)
def forward(self, x, edge_index, edge_attr, batch, activation=None):
h = self.PNA_layer(x, edge_index, edge_attr, batch)
h = activation(h) if activation is not None else h
return h"""
"""class Discriminator_old(nn.Module):
def __init__(self, conv_dim, m_dim, b_dim, dropout, gcn_depth):
super(Discriminator_old, self).__init__()
graph_conv_dim, aux_dim, linear_dim = conv_dim
# discriminator
self.gcn_layer = GraphConvolution(m_dim, graph_conv_dim, b_dim, dropout,gcn_depth)
self.agg_layer = GraphAggregation(graph_conv_dim[-1], aux_dim, m_dim, dropout)
# multi dense layer
layers = []
for c0, c1 in zip([aux_dim]+linear_dim[:-1], linear_dim):
layers.append(nn.Linear(c0,c1))
layers.append(nn.Dropout(dropout))
self.linear_layer = nn.Sequential(*layers)
self.output_layer = nn.Linear(linear_dim[-1], 1)
def forward(self, adj, hidden, node, activation=None):
adj = adj[:,:,:,1:].permute(0,3,1,2)
annotations = torch.cat((hidden, node), -1) if hidden is not None else node
h = self.gcn_layer(annotations, adj)
annotations = torch.cat((h, hidden, node) if hidden is not None\
else (h, node), -1)
h = self.agg_layer(annotations, torch.tanh)
h = self.linear_layer(h)
# Need to implement batch discriminator #
#########################################
output = self.output_layer(h)
output = activation(output) if activation is not None else output
return output, h"""
"""class Discriminator_old2(nn.Module):
def __init__(self, conv_dim, m_dim, b_dim, dropout, gcn_depth):
super(Discriminator_old2, self).__init__()
graph_conv_dim, aux_dim, linear_dim = conv_dim
# discriminator
self.gcn_layer = GraphConvolution(m_dim, graph_conv_dim, b_dim, dropout, gcn_depth)
self.agg_layer = GraphAggregation(graph_conv_dim[-1], aux_dim, m_dim, dropout)
# multi dense layer
layers = []
for c0, c1 in zip([aux_dim]+linear_dim[:-1], linear_dim):
layers.append(nn.Linear(c0,c1))
layers.append(nn.Dropout(dropout))
self.linear_layer = nn.Sequential(*layers)
self.output_layer = nn.Linear(linear_dim[-1], 1)
def forward(self, adj, hidden, node, activation=None):
adj = adj[:,:,:,1:].permute(0,3,1,2)
annotations = torch.cat((hidden, node), -1) if hidden is not None else node
h = self.gcn_layer(annotations, adj)
annotations = torch.cat((h, hidden, node) if hidden is not None\
else (h, node), -1)
h = self.agg_layer(annotations, torch.tanh)
h = self.linear_layer(h)
# Need to implement batch discriminator #
#########################################
output = self.output_layer(h)
output = activation(output) if activation is not None else output
return output, h"""
"""class Discriminator3(nn.Module):
def __init__(self,in_ch):
super(Discriminator3, self).__init__()
self.dim = in_ch
self.TraConv_layer = TransformerConv(in_channels = self.dim,out_channels = self.dim//4,edge_dim = self.dim)
self.mlp = torch.nn.Sequential(torch.nn.Tanh(), torch.nn.Linear(self.dim//4,1))
def forward(self, x, edge_index, edge_attr, batch, activation=None):
h = self.TraConv_layer(x, edge_index, edge_attr)
h = global_add_pool(h,batch)
h = self.mlp(h)
h = activation(h) if activation is not None else h
return h"""
"""class PNA_Net(nn.Module):
def __init__(self,deg):
super().__init__()
self.convs = nn.ModuleList()
self.lin = nn.Linear(5, 128)
for _ in range(1):
conv = DenseGCNConv(128, 128, improved=False, bias=True)
self.convs.append(conv)
self.agg_layer = GraphAggregation(128, 128, 0, dropout=0.1)
self.mlp = nn.Sequential(nn.Linear(128, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(),
nn.Linear(32, 1))
def forward(self, x, adj,mask=None):
x = self.lin(x)
for conv in self.convs:
x = F.relu(conv(x, adj,mask=None))
x = self.agg_layer(x,torch.tanh)
return self.mlp(x) """
|