Spaces:
Running
Running
File size: 13,596 Bytes
8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 f72f4a3 4e04e76 f72f4a3 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
import time
import pickle
import random
from tqdm import tqdm
import argparse
import pandas as pd
import torch
from torch_geometric.loader import DataLoader
import torch.utils.data
from rdkit import RDLogger
torch.set_num_threads(5)
RDLogger.DisableLog('rdApp.*')
from rdkit.Chem import QED
from utils import *
from models import Generator
from new_dataloader import DruggenDataset
from loss import generator_loss
from training_data import load_molecules
from smiles_cor import smi_correct
class Inference(object):
"""Inference class for DrugGEN."""
def __init__(self, config):
if config.set_seed:
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(config.seed)
print(f'Using seed {config.seed}')
self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
# Initialize configurations
self.submodel = config.submodel
self.inference_model = config.inference_model
self.sample_num = config.sample_num
self.correct = config.correct
# Data loader.
self.inf_raw_file = config.inf_raw_file # SMILES containing text file for first dataset.
# Write the full path to file.
self.inf_dataset_file = config.inf_dataset_file # Dataset file name for the first GAN.
# Contains large number of molecules.
self.inf_batch_size = config.inf_batch_size
self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored.
self.dataset_name = self.inf_dataset_file.split(".")[0]
self.max_atom = config.max_atom # Model is based on one-shot generation.
# Max atom number for molecules must be specified.
self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.)
# Additional node features can be added. Please check new_dataloarder.py Line 102.
self.inf_dataset = DruggenDataset(self.mol_data_dir,
self.inf_dataset_file,
self.inf_raw_file,
self.max_atom,
self.features) # Dataset for the first GAN. Custom dataset class from PyG parent class.
# Can create any molecular graph dataset given smiles string.
# Nonisomeric SMILES are suggested but not necessary.
# Uses sparse matrix representation for graphs,
# For computational and speed efficiency.
self.inf_loader = DataLoader(self.inf_dataset,
shuffle=True,
batch_size=self.inf_batch_size,
drop_last=True) # PyG dataloader for the first GAN.
# Atom and bond type dimensions for the construction of the model.
self.atom_decoders = self.decoder_load("atom") # Atom type decoders for first GAN.
# eg. 0:0, 1:6 (C), 2:7 (N), 3:8 (O), 4:9 (F)
self.bond_decoders = self.decoder_load("bond") # Bond type decoders for first GAN.
# eg. 0: (no-bond), 1: (single), 2: (double), 3: (triple), 4: (aromatic)
self.m_dim = len(self.atom_decoders) if not self.features else int(self.inf_loader.dataset[0].x.shape[1]) # Atom type dimension.
self.b_dim = len(self.bond_decoders) # Bond type dimension.
self.vertexes = int(self.inf_loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
# Transformer and Convolution configurations.
self.act = config.act
self.dim = config.dim
self.depth = config.depth
self.heads = config.heads
self.mlp_ratio = config.mlp_ratio
self.dropout = config.dropout
self.build_model()
def build_model(self):
"""Create generators and discriminators."""
self.G = Generator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.dropout,
dim=self.dim,
depth=self.depth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
self.print_network(self.G, 'G')
self.G.to(self.device)
def decoder_load(self, dictionary_name):
''' Loading the atom and bond decoders'''
with open("DrugGEN/data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
return pickle.load(f)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, submodel, model_directory):
"""Restore the trained generator and discriminator."""
print('Loading the model...')
G_path = os.path.join(model_directory, '{}-G.ckpt'.format(submodel))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
def inference(self):
# Load the trained generator.
self.restore_model(self.submodel, self.inference_model)
# smiles data for metrics calculation.
chembl_smiles = [line for line in open("DrugGEN/data/chembl_train.smi", 'r').read().splitlines()]
chembl_test = [line for line in open("DrugGEN/data/chembl_test.smi", 'r').read().splitlines()]
drug_smiles = [line for line in open("DrugGEN/data/akt_inhibitors.smi", 'r').read().splitlines()]
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
# Make directories if not exist.
if not os.path.exists("DrugGEN/experiments/inference/{}".format(self.submodel)):
os.makedirs("DrugGEN/experiments/inference/{}".format(self.submodel))
if self.correct:
correct = smi_correct(self.submodel, "DrugGEN_/experiments/inference/{}".format(self.submodel))
search_res = pd.DataFrame(columns=["submodel", "validity",
"uniqueness", "novelty",
"novelty_test", "AKT_novelty",
"max_len", "mean_atom_type",
"snn_chembl", "snn_akt", "IntDiv", "qed"])
self.G.eval()
start_time = time.time()
metric_calc_dr = []
uniqueness_calc = []
real_smiles_snn = []
nodes_sample = torch.Tensor(size=[1,45,1]).to(self.device)
f = open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
f.write("SMILES")
f.write("\n")
val_counter = 0
none_counter = 0
# Inference mode
with torch.inference_mode():
pbar = tqdm(range(self.sample_num))
pbar.set_description('Inference mode for {} model started'.format(self.submodel))
for i, data in enumerate(self.inf_loader):
val_counter += 1
# Preprocess dataset
_, a_tensor, x_tensor = load_molecules(
data=data,
batch_size=self.inf_batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
_, _, node_sample, edge_sample = self.G(a_tensor, x_tensor)
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
fake_mol_g = [self.inf_dataset.matrices2mol_drugs(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
a_tensor_sample = torch.max(a_tensor, -1)[1]
x_tensor_sample = torch.max(x_tensor, -1)[1]
real_mols = [self.inf_dataset.matrices2mol_drugs(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=self.dataset_name)
for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
inference_drugs = [None if line is None else Chem.MolToSmiles(line) for line in fake_mol_g]
inference_drugs = [None if x is None else max(x.split('.'), key=len) for x in inference_drugs]
for molecules in inference_drugs:
if molecules is None:
none_counter += 1
for molecules in inference_drugs:
if molecules is not None:
molecules = molecules.replace("*", "C")
f.write(molecules)
f.write("\n")
uniqueness_calc.append(molecules)
nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1,45,1)), 0)
pbar.update(1)
metric_calc_dr.append(molecules)
real_smiles_snn.append(real_mols[0])
generation_number = len([x for x in metric_calc_dr if x is not None])
if generation_number == self.sample_num or none_counter == self.sample_num:
break
f.close()
print("Inference completed, starting metrics calculation.")
if self.correct:
corrected = correct.correct("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))
gen_smi = corrected["SMILES"].tolist()
else:
gen_smi = pd.read_csv("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
et = time.time() - start_time
with open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w") as f:
for i in gen_smi:
f.write(i)
f.write("\n")
if self.correct:
val = round(len(gen_smi)/self.sample_num,3)
else:
val = round(fraction_valid(gen_smi),3)
return{
"Runtime (seconds)": f"{et:.2f}",
"Validity": str(val),
"Uniqueness": f"{fraction_unique(uniqueness_calc):.2f}",
"Novelty (Train)": f"{novelty(metric_calc_dr, chembl_smiles):.2f}",
"Novelty (Inference)": f"{novelty(metric_calc_dr, chembl_test):.2f}",
}
if __name__=="__main__":
parser = argparse.ArgumentParser()
# Inference configuration.
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
parser.add_argument('--correct', type=str2bool, default=False, help='Correct smiles')
# Data configuration.
parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
parser.add_argument('--inf_raw_file', type=str, default='DrugGEN/data/chembl_test.smi')
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
parser.add_argument('--mol_data_dir', type=str, default='DrugGEN/data')
parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
# Model configuration.
parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
# Seed configuration.
parser.add_argument('--set_seed', type=bool, default=False, help='set seed for reproducibility')
parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
config = parser.parse_args()
inference = Inference(config)
inference.inference()
|