File size: 6,511 Bytes
22e50e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a385f9f
22e50e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
from trainer import Trainer
import PIL
from PIL import Image
import pandas as pd
import random
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import IPythonConsole
import shutil

class DrugGENConfig:
    submodel='CrossLoss'
    act='relu'
    z_dim=16
    max_atom=45
    lambda_gp=1
    dim=128
    depth=1
    heads=8
    dec_depth=1
    dec_heads=8
    dec_dim=128
    mlp_ratio=3
    warm_up_steps=0
    dis_select='mlp'
    init_type='normal'
    batch_size=128
    epoch=50
    g_lr=0.00001
    d_lr=0.00001
    g2_lr=0.00001
    d2_lr=0.00001
    dropout=0.
    dec_dropout=0.
    n_critic=1
    beta1=0.9
    beta2=0.999
    resume_iters=None
    clipping_value=2
    features=False
    test_iters=10_000
    num_test_epoch=30_000
    inference_sample_num=1000
    num_workers=1
    mode="inference"
    inference_iterations=100
    inf_batch_size=1
    protein_data_dir='data/akt'
    drug_index='data/drug_smiles.index'
    drug_data_dir='data/akt'
    mol_data_dir='data'
    log_dir='experiments/logs'
    model_save_dir='experiments/models'
    # inference_model=""
    sample_dir='experiments/samples'
    result_dir="experiments/tboard_output"
    dataset_file="chembl45_train.pt"
    drug_dataset_file="akt_train.pt"
    raw_file='data/chembl_train.smi'
    drug_raw_file="data/akt_train.smi"
    inf_dataset_file="chembl45_test.pt"
    inf_drug_dataset_file='akt_test.pt'
    inf_raw_file='data/chembl_test.smi'
    inf_drug_raw_file="data/akt_test.smi"
    log_sample_step=1000
    set_seed=True
    seed=1
    resume=False
    resume_epoch=None
    resume_iter=None
    resume_directory=None
    
class ProtConfig(DrugGENConfig):
    submodel="Prot"
    inference_model="experiments/models/Prot"

class CrossLossConfig(DrugGENConfig):
    submodel="CrossLoss"
    inference_model="experiments/models/CrossLoss"

class NoTargetConfig(DrugGENConfig):
    submodel="NoTarget"
    inference_model="experiments/models/NoTarget"


model_configs = {
    "Prot": ProtConfig(),
    "CrossLoss": CrossLossConfig(),
    "NoTarget": NoTargetConfig(),
}



def function(model_name: str, mol_num: int, seed: int) -> tuple[PIL.Image, pd.DataFrame, str]:
    '''
    Returns:
    image, score_df, file path
    '''
    model_name = model_name.replace("DrugGEN-", "")

    config = model_configs[model_name]
    config.inference_sample_num = mol_num
    config.seed = seed

    trainer = Trainer(config)
    scores = trainer.inference() # create scores_df out of this

    score_df = pd.DataFrame(scores, index=[0])

    output_file_path = f'experiments/inference/{model_name}/inference_drugs.txt'
    import os
    new_path = f'DrugGEN-{model_name}_denovo_mols.smi'
    os.rename(output_file_path, new_path)
    
    with open(new_path) as f:
        inference_drugs = f.read()
    
    generated_molecule_list = inference_drugs.split("\n")
    
    rng = random.Random(seed)
    
    selected_molecules = rng.choices(generated_molecule_list,k=12)
    selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules]
    
    drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
    drawOptions.prepareMolsBeforeDrawing = False
    drawOptions.bondLineWidth = 0.5

    molecule_image = Draw.MolsToGridImage(
        selected_molecules,
        molsPerRow=3,
        subImgSize=(400, 400),
        maxMols=len(selected_molecules),
        # legends=None,
        returnPNG=False,
        drawOptions=drawOptions,
        highlightAtomLists=None,
        highlightBondLists=None,
    )


    return molecule_image, score_df, new_path



with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("# DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
            with gr.Row():
                gr.Markdown("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868)")
                gr.Markdown("[![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
            
            with gr.Accordion("Expand to display information about models", open=False):
                gr.Markdown("""
### Model Variations
- **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
- **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
- **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
        """)
            model_name = gr.Radio(
                choices=("DrugGEN-Prot", "DrugGEN-CrossLoss", "DrugGEN-NoTarget"),
                value="DrugGEN-Prot",
                label="Select a model to make inference",
                info=" DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein"
            )

            num_molecules = gr.Number(
                label="Number of molecules to generate",
                precision=0, # integer input
                minimum=1,
                value=1000,
            )
            seed_num = gr.Number(
                label="RNG seed value (can be used for reproducibility):",
                precision=0, # integer input
                minimum=0,
                value=42,
            )

            submit_button = gr.Button(
                value="Start Generating"
            )

        with gr.Column(scale=2):
            scores_df = gr.Dataframe(
                label="Scores",
                headers=["Runtime (seconds)", "Validity", "Uniqueness", "Novelty"],
            )
            file_download = gr.File(
                label="Click to download generated molecules",
            )
            image_output = gr.Image(
                label="Structures of randomly selected 12 de novo molecules from the inference set:"
            )
            # ).style(
            #     height=200*4,
            #     width=200*3,
            # )

    submit_button.click(function, inputs=[model_name, num_molecules, seed_num], outputs=[image_output, scores_df, file_download], api_name="inference")

demo.queue(concurrency_count=1)
demo.launch()