Spaces:
Running
Running
File size: 15,307 Bytes
fd37f66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import torch
import torch.nn as nn
from torch.nn.modules.module import Module
from torch.nn import functional as F
from torch.nn import Embedding, ModuleList
from torch_geometric.nn import PNAConv, global_add_pool, Set2Set, GraphMultisetTransformer
import math
class MLP(nn.Module):
def __init__(self, act, in_feat, hid_feat=None, out_feat=None,
dropout=0.):
super().__init__()
if not hid_feat:
hid_feat = in_feat
if not out_feat:
out_feat = in_feat
self.fc1 = nn.Linear(in_feat, hid_feat)
self.act = torch.nn.ReLU()
self.fc2 = nn.Linear(hid_feat,out_feat)
self.droprateout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return self.droprateout(x)
class Attention_new(nn.Module):
def __init__(self, dim, heads, act, attention_dropout=0., proj_dropout=0.):
super().__init__()
assert dim % heads == 0
self.heads = heads
self.scale = 1./dim**0.5
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.e = nn.Linear(dim, dim)
#self.attention_dropout = nn.Dropout(attention_dropout)
self.d_k = dim // heads
self.heads = heads
self.out_e = nn.Linear(dim,dim)
self.out_n = nn.Linear(dim, dim)
def forward(self, node, edge):
b, n, c = node.shape
q_embed = self.q(node).view(-1, n, self.heads, c//self.heads)
k_embed = self.k(node).view(-1, n, self.heads, c//self.heads)
v_embed = self.v(node).view(-1, n, self.heads, c//self.heads)
e_embed = self.e(edge).view(-1, n, n, self.heads, c//self.heads)
q_embed = q_embed.unsqueeze(2)
k_embed = k_embed.unsqueeze(1)
attn = q_embed * k_embed
attn = attn/ math.sqrt(self.d_k)
attn = attn * (e_embed + 1) * e_embed
edge = self.out_e(attn.flatten(3))
attn = F.softmax(attn, dim=2)
v_embed = v_embed.unsqueeze(1)
v_embed = attn * v_embed
v_embed = v_embed.sum(dim=2).flatten(2)
node = self.out_n(v_embed)
return node, edge
class Encoder_Block(nn.Module):
def __init__(self, dim, heads,act, mlp_ratio=4, drop_rate=0., ):
super().__init__()
self.ln1 = nn.LayerNorm(dim)
self.attn = Attention_new(dim, heads, act, drop_rate, drop_rate)
self.ln3 = nn.LayerNorm(dim)
self.ln4 = nn.LayerNorm(dim)
self.mlp = MLP(act,dim,dim*mlp_ratio, dim, dropout=drop_rate)
self.mlp2 = MLP(act,dim,dim*mlp_ratio, dim, dropout=drop_rate)
self.ln5 = nn.LayerNorm(dim)
self.ln6 = nn.LayerNorm(dim)
def forward(self, x,y):
x1 = self.ln1(x)
x2,y1 = self.attn(x1,y)
x2 = x1 + x2
y2 = y1 + y
x2 = self.ln3(x2)
y2 = self.ln4(y2)
x = self.ln5(x2 + self.mlp(x2))
y = self.ln6(y2 + self.mlp2(y2))
return x, y
class TransformerEncoder(nn.Module):
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1):
super().__init__()
self.Encoder_Blocks = nn.ModuleList([
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate)
for i in range(depth)])
def forward(self, x,y):
for Encoder_Block in self.Encoder_Blocks:
x, y = Encoder_Block(x,y)
return x, y
class enc_dec_attention(nn.Module):
def __init__(self, dim, heads, attention_dropout=0., proj_dropout=0.):
super().__init__()
self.dim = dim
self.heads = heads
self.scale = 1./dim**0.5
"query is molecules"
"key is prot"
"values is again molecule"
self.q_mx = nn.Linear(dim,dim)
self.k_px = nn.Linear(dim,dim)
self.v_mx = nn.Linear(dim,dim)
self.k_pa = nn.Linear(dim,dim)
self.v_ma = nn.Linear(dim,dim)
#self.dropout_dec = nn.Dropout(proj_dropout)
self.out_nd = nn.Linear(dim, dim)
self.out_ed = nn.Linear(dim,dim)
def forward(self, mol_annot, prot_annot, mol_adj, prot_adj):
b, n, c = mol_annot.shape
_, m, _ = prot_annot.shape
query_mol_annot = self.q_mx(mol_annot).view(-1,m, self.heads, c//self.heads)
key_prot_annot = self.k_px(prot_annot).view(-1,n, self.heads, c//self.heads)
value_mol_annot = self.v_mx(mol_annot).view(-1,m, self.heads, c//self.heads)
mol_e = self.v_ma(mol_adj).view(-1,m,m, self.heads, c//self.heads)
prot_e = self.k_pa(prot_adj).view(-1,m,m, self.heads, c//self.heads)
query_mol_annot = query_mol_annot.unsqueeze(2)
key_prot_annot = key_prot_annot.unsqueeze(1)
#attn = torch.einsum('bnchd,bmahd->bnahd', query_mol_annot, key_prot_annot)
attn = query_mol_annot * key_prot_annot
attn = attn/ math.sqrt(self.dim)
attn = attn * (prot_e + 1) * mol_e
mol_e_new = attn.flatten(3)
mol_adj = self.out_ed(mol_e_new)
attn = F.softmax(attn, dim=2)
value_mol_annot = value_mol_annot.unsqueeze(1)
value_mol_annot = attn * value_mol_annot
value_mol_annot = value_mol_annot.sum(dim=2).flatten(2)
mol_annot = self.out_nd(value_mol_annot)
return mol_annot, prot_annot, mol_adj, prot_adj
class Decoder_Block(nn.Module):
def __init__(self, dim, heads, mlp_ratio=4, drop_rate=0.):
super().__init__()
self.ln1_ma = nn.LayerNorm(dim)
self.ln1_pa = nn.LayerNorm(dim)
self.ln1_mx = nn.LayerNorm(dim)
self.ln1_px = nn.LayerNorm(dim)
self.attn2 = Attention_new(dim, heads, drop_rate, drop_rate)
self.ln2_pa = nn.LayerNorm(dim)
self.ln2_px = nn.LayerNorm(dim)
self.dec_attn = enc_dec_attention(dim, heads, drop_rate, drop_rate)
self.ln3_ma = nn.LayerNorm(dim)
self.ln3_mx = nn.LayerNorm(dim)
self.mlp_ma = MLP(dim, dim, dropout=drop_rate)
self.mlp_mx = MLP(dim, dim, dropout=drop_rate)
self.ln4_ma = nn.LayerNorm(dim)
self.ln4_mx = nn.LayerNorm(dim)
def forward(self,mol_annot, prot_annot, mol_adj, prot_adj):
mol_annot = self.ln1_mx(mol_annot)
mol_adj = self.ln1_ma(mol_adj)
prot_annot = self.ln1_px(prot_annot)
prot_adj = self.ln1_pa(prot_adj)
px1, pa1= self.attn2(prot_annot, prot_adj)
prot_annot = prot_annot + px1
prot_adj = prot_adj + pa1
prot_annot = self.ln2_px(prot_annot)
prot_adj = self.ln2_pa(prot_adj)
mx1, prot_annot, ma1, prot_adj = self.dec_attn(mol_annot,prot_annot,mol_adj,prot_adj)
ma1 = mol_adj + ma1
mx1 = mol_annot + mx1
ma2 = self.ln3_ma(ma1)
mx2 = self.ln3_mx(mx1)
ma3 = self.mlp_ma(ma2)
mx3 = self.mlp_mx(mx2)
ma = ma3 + ma2
mx = mx3 + mx2
mol_adj = self.ln4_ma(ma)
mol_annot = self.ln4_mx(mx)
return mol_annot, prot_annot, mol_adj, prot_adj
class TransformerDecoder(nn.Module):
def __init__(self, dim, depth, heads, mlp_ratio=4, drop_rate=0.):
super().__init__()
self.Decoder_Blocks = nn.ModuleList([
Decoder_Block(dim, heads, mlp_ratio, drop_rate)
for i in range(depth)])
def forward(self, mol_annot, prot_annot, mol_adj, prot_adj):
for Decoder_Block in self.Decoder_Blocks:
mol_annot, prot_annot, mol_adj, prot_adj = Decoder_Block(mol_annot, prot_annot, mol_adj, prot_adj)
return mol_annot, prot_annot,mol_adj, prot_adj
"""class PNA(torch.nn.Module):
def __init__(self,deg,agg,sca,pna_in_ch,pna_out_ch,edge_dim,towers,pre_lay,post_lay,pna_layer_num, graph_add):
super(PNA,self).__init__()
self.node_emb = Embedding(30, pna_in_ch)
self.edge_emb = Embedding(30, edge_dim)
degree = deg
aggregators = agg.split(",") #["max"] # 'sum', 'min', 'max' 'std', 'var' 'mean', ## buraları değiştirerek bak.
scalers = sca.split(",") # ['amplification', 'attenuation'] # 'amplification', 'attenuation' , 'linear', 'inverse_linear, 'identity'
self.graph_add = graph_add
self.convs = ModuleList()
self.batch_norms = ModuleList()
for _ in range(pna_layer_num): ##### layer sayısını hyperparameter olarak ayarla??
conv = PNAConv(in_channels=pna_in_ch, out_channels=pna_out_ch,
aggregators=aggregators, scalers=scalers, deg=degree,
edge_dim=edge_dim, towers=towers, pre_layers=pre_lay, post_layers=post_lay, ## tower sayısını değiştirerek dene, default - 1
divide_input=True)
self.convs.append(conv)
self.batch_norms.append(nn.LayerNorm(pna_out_ch))
#self.graph_multitrans = GraphMultisetTransformer(in_channels=pna_out_ch, hidden_channels= 200,
#out_channels= pna_out_ch, layer_norm = True)
if self.graph_add == "set2set":
self.s2s = Set2Set(in_channels=pna_out_ch, processing_steps=1, num_layers=1)
if self.graph_add == "set2set":
pna_out_ch = pna_out_ch*2
self.mlp = nn.Sequential(nn.Linear(pna_out_ch,pna_out_ch), nn.Tanh(), nn.Linear(pna_out_ch,25), nn.Tanh(),nn.Linear(25,1))
def forward(self, x, edge_index, edge_attr, batch):
x = self.node_emb(x.squeeze())
edge_attr = self.edge_emb(edge_attr)
for conv, batch_norm in zip(self.convs, self.batch_norms):
x = F.relu(batch_norm(conv(x, edge_index, edge_attr)))
if self.graph_add == "global_add":
x = global_add_pool(x, batch.squeeze())
elif self.graph_add == "set2set":
x = self.s2s(x, batch.squeeze())
#elif self.graph_add == "graph_multitrans":
#x = self.graph_multitrans(x,batch.squeeze(),edge_index)
x = self.mlp(x)
return x"""
"""class GraphConvolution(nn.Module):
def __init__(self, in_features, out_feature_list, b_dim, dropout,gcn_depth):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.gcn_depth = gcn_depth
self.out_feature_list = out_feature_list
self.gcn_in = nn.Sequential(nn.Linear(in_features,out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0], out_feature_list[0]), nn.Dropout(dropout))
self.gcn_convs = nn.ModuleList()
for _ in range(gcn_depth):
gcn_conv = nn.Sequential(nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0], out_feature_list[0]), nn.Dropout(dropout))
self.gcn_convs.append(gcn_conv)
self.gcn_out = nn.Sequential(nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0], out_feature_list[1]), nn.Dropout(dropout))
self.dropout = nn.Dropout(dropout)
def forward(self, input, adj, activation=None):
# input : 16x9x9
# adj : 16x4x9x9
hidden = torch.stack([self.gcn_in(input) for _ in range(adj.size(1))], 1)
hidden = torch.einsum('bijk,bikl->bijl', (adj, hidden))
hidden = torch.sum(hidden, 1) + self.gcn_in(input)
hidden = activation(hidden) if activation is not None else hidden
for gcn_conv in self.gcn_convs:
hidden1 = torch.stack([gcn_conv(hidden) for _ in range(adj.size(1))], 1)
hidden1 = torch.einsum('bijk,bikl->bijl', (adj, hidden1))
hidden = torch.sum(hidden1, 1) + gcn_conv(hidden)
hidden = activation(hidden) if activation is not None else hidden
output = torch.stack([self.gcn_out(hidden) for _ in range(adj.size(1))], 1)
output = torch.einsum('bijk,bikl->bijl', (adj, output))
output = torch.sum(output, 1) + self.gcn_out(hidden)
output = activation(output) if activation is not None else output
return output
class GraphAggregation(Module):
def __init__(self, in_features, out_features, m_dim, dropout):
super(GraphAggregation, self).__init__()
self.sigmoid_linear = nn.Sequential(nn.Linear(in_features+m_dim, out_features), nn.Sigmoid())
self.tanh_linear = nn.Sequential(nn.Linear(in_features+m_dim, out_features), nn.Tanh())
self.dropout = nn.Dropout(dropout)
def forward(self, input, activation):
i = self.sigmoid_linear(input)
j = self.tanh_linear(input)
output = torch.sum(torch.mul(i,j), 1)
output = activation(output) if activation is not None\
else output
output = self.dropout(output)
return output"""
"""class Attention(nn.Module):
def __init__(self, dim, heads=4, attention_dropout=0., proj_dropout=0.):
super().__init__()
self.heads = heads
self.scale = 1./dim**0.5
#self.scale = torch.div(1, torch.pow(dim, 0.5)) #1./torch.pow(dim, 0.5) #dim**0.5 torch.div(x, 0.5)
self.qkv = nn.Linear(dim, dim*3, bias=False)
self.attention_dropout = nn.Dropout(attention_dropout)
self.out = nn.Sequential(
nn.Linear(dim, dim),
nn.Dropout(proj_dropout)
)
#self.noise_strength_1 = torch.nn.Parameter(torch.zeros([]))
def forward(self, x):
b, n, c = x.shape
#x = x + torch.randn([x.size(0), x.size(1), 1], device=x.device) * self.noise_strength_1
qkv = self.qkv(x).reshape(b, n, 3, self.heads, c//self.heads)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
dot = (q @ k.transpose(-2, -1)) * self.scale
attn = dot.softmax(dim=-1)
attn = self.attention_dropout(attn)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.out(x)
return x, attn"""
|