File size: 11,444 Bytes
1a3cfaf
 
6fec8c3
1a3cfaf
 
6fec8c3
 
 
 
 
 
1a3cfaf
 
 
 
 
 
 
 
 
 
6fec8c3
 
 
1a3cfaf
6fec8c3
 
 
 
 
 
1a3cfaf
 
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
6fec8c3
1a3cfaf
 
 
6fec8c3
 
1a3cfaf
 
6fec8c3
 
 
1a3cfaf
 
 
 
6fec8c3
 
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fec8c3
 
1a3cfaf
 
 
 
 
 
6fec8c3
1a3cfaf
 
6fec8c3
 
1a3cfaf
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
6fec8c3
1a3cfaf
 
6fec8c3
1a3cfaf
 
6fec8c3
 
1a3cfaf
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fec8c3
 
 
 
 
 
 
 
 
 
1a3cfaf
6fec8c3
 
 
1a3cfaf
6fec8c3
1a3cfaf
6fec8c3
 
 
1a3cfaf
 
 
6fec8c3
1a3cfaf
 
 
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fec8c3
1a3cfaf
6fec8c3
1a3cfaf
 
 
 
 
 
 
 
6fec8c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import pickle
import numpy as np
import torch
from rdkit import Chem
from torch_geometric.data import (Data, InMemoryDataset)
import os.path as osp
import pickle
import torch
from tqdm import tqdm
import re 
from rdkit import RDLogger  
RDLogger.DisableLog('rdApp.*') 
class DruggenDataset(InMemoryDataset):
    
    def __init__(self, root, dataset_file, raw_files, max_atom, features, transform=None, pre_transform=None, pre_filter=None):
        self.dataset_name = dataset_file.split(".")[0]
        self.dataset_file = dataset_file
        self.raw_files = raw_files
        self.max_atom = max_atom
        self.features = features
        super().__init__(root, transform, pre_transform, pre_filter)
        path = osp.join(self.processed_dir, dataset_file)
        self.data, self.slices = torch.load(path)
        self.root = root

        
    @property
    def processed_dir(self):
        
        return self.root
    
    @property
    def raw_file_names(self):
        return self.raw_files

    @property
    def processed_file_names(self):
        return self.dataset_file

    def _generate_encoders_decoders(self, data):
        
        self.data = data
        print('Creating atoms encoder and decoder..')
        atom_labels = sorted(set([atom.GetAtomicNum() for mol in self.data for atom in mol.GetAtoms()] + [0]))
        self.atom_encoder_m = {l: i for i, l in enumerate(atom_labels)}
        self.atom_decoder_m = {i: l for i, l in enumerate(atom_labels)}
        self.atom_num_types = len(atom_labels)
        print('Created atoms encoder and decoder with {} atom types and 1 PAD symbol!'.format(
            self.atom_num_types - 1))
        print("atom_labels", atom_labels)
        print('Creating bonds encoder and decoder..')
        bond_labels = [Chem.rdchem.BondType.ZERO] + list(sorted(set(bond.GetBondType()
                                                                    for mol in self.data
                                                                    for bond in mol.GetBonds())))
        print("bond labels", bond_labels)
        self.bond_encoder_m = {l: i for i, l in enumerate(bond_labels)}
        self.bond_decoder_m = {i: l for i, l in enumerate(bond_labels)}
        self.bond_num_types = len(bond_labels)
        print('Created bonds encoder and decoder with {} bond types and 1 PAD symbol!'.format(
            self.bond_num_types - 1))        
        #dataset_names = str(self.dataset_name)
        with open("DrugGEN/data/encoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_encoders:
            pickle.dump(self.atom_encoder_m,atom_encoders)
        
        
        with open("DrugGEN/data/decoders/" +"atom_" +  self.dataset_name + ".pkl","wb") as atom_decoders:
            pickle.dump(self.atom_decoder_m,atom_decoders)
        
               
        with open("DrugGEN/data/encoders/" +"bond_" +  self.dataset_name + ".pkl","wb") as bond_encoders:
            pickle.dump(self.bond_encoder_m,bond_encoders)
        
              
        with open("DrugGEN/data/decoders/" +"bond_" +  self.dataset_name + ".pkl","wb") as bond_decoders:
            pickle.dump(self.bond_decoder_m,bond_decoders)
         
        
        
    def _genA(self, mol, connected=True, max_length=None):

        max_length = max_length if max_length is not None else mol.GetNumAtoms()

        A = np.zeros(shape=(max_length, max_length))

        begin, end = [b.GetBeginAtomIdx() for b in mol.GetBonds()], [b.GetEndAtomIdx() for b in mol.GetBonds()]
        bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()]

        A[begin, end] = bond_type
        A[end, begin] = bond_type

        degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1)

        return A if connected and (degree > 0).all() else None

    def _genX(self, mol, max_length=None):

        max_length = max_length if max_length is not None else mol.GetNumAtoms()

        return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + [0] * (
                    max_length - mol.GetNumAtoms()))

    def _genF(self, mol, max_length=None):

        max_length = max_length if max_length is not None else mol.GetNumAtoms()

        features = np.array([[*[a.GetDegree() == i for i in range(5)],
                              *[a.GetExplicitValence() == i for i in range(9)],
                              *[int(a.GetHybridization()) == i for i in range(1, 7)],
                              *[a.GetImplicitValence() == i for i in range(9)],
                              a.GetIsAromatic(),
                              a.GetNoImplicit(),
                              *[a.GetNumExplicitHs() == i for i in range(5)],
                              *[a.GetNumImplicitHs() == i for i in range(5)],
                              *[a.GetNumRadicalElectrons() == i for i in range(5)],
                              a.IsInRing(),
                              *[a.IsInRingSize(i) for i in range(2, 9)]] for a in mol.GetAtoms()], dtype=np.int32)

        return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1]))))

    def decoder_load(self, dictionary_name, file):
        with open("DrugGEN/data/decoders/" + dictionary_name + "_" + file + '.pkl', 'rb') as f:
            return pickle.load(f)    
        
    def drugs_decoder_load(self, dictionary_name):
        with open("DrugGEN/data/decoders/" + dictionary_name +'.pkl', 'rb') as f:
            return pickle.load(f)      
        
    def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None):
        mol = Chem.RWMol()
        RDLogger.DisableLog('rdApp.*') 
        atom_decoders = self.decoder_load("atom", file_name)
        bond_decoders = self.decoder_load("bond", file_name)
        
        for node_label in node_labels:
            mol.AddAtom(Chem.Atom(atom_decoders[node_label]))

        for start, end in zip(*np.nonzero(edge_labels)):
            if start > end:
                mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
        #mol = self.correct_mol(mol)
        if strict:
            try:
                
                Chem.SanitizeMol(mol)
            except:
                mol = None

        return mol
    
    def drug_decoder_load(self, dictionary_name, file):
        
        ''' Loading the atom and bond decoders '''
        
        with open("DrugGEN/data/decoders/" + dictionary_name +"_" + file +'.pkl', 'rb') as f:
            
            return pickle.load(f) 
    def matrices2mol_drugs(self, node_labels, edge_labels, strict=True, file_name=None):
        mol = Chem.RWMol()
        RDLogger.DisableLog('rdApp.*') 
        atom_decoders = self.drug_decoder_load("atom", file_name)
        bond_decoders = self.drug_decoder_load("bond", file_name)
        
        for node_label in node_labels:
            
            mol.AddAtom(Chem.Atom(atom_decoders[node_label]))

        for start, end in zip(*np.nonzero(edge_labels)):
            if start > end:
                mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
        #mol = self.correct_mol(mol)
        if strict:
            try:
                Chem.SanitizeMol(mol)
            except:
                mol = None

        return mol
    def check_valency(self,mol):
        """
        Checks that no atoms in the mol have exceeded their possible
        valency
        :return: True if no valency issues, False otherwise
        """
        try:
            Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
            return True, None
        except ValueError as e:
            e = str(e)
            p = e.find('#')
            e_sub = e[p:]
            atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
            return False, atomid_valence


    def correct_mol(self,x):
        xsm = Chem.MolToSmiles(x, isomericSmiles=True)
        mol = x
        while True:
            flag, atomid_valence = self.check_valency(mol)
            if flag:
                break
            else:
                assert len (atomid_valence) == 2
                idx = atomid_valence[0]
                v = atomid_valence[1]
                queue = []
                for b in mol.GetAtomWithIdx(idx).GetBonds():
                    queue.append(
                        (b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx())
                    )
                queue.sort(key=lambda tup: tup[1], reverse=True)
                if len(queue) > 0:
                    start = queue[0][2]
                    end = queue[0][3]
                    t = queue[0][1] - 1
                    mol.RemoveBond(start, end)
        
                    #if t >= 1:
                        
                        #mol.AddBond(start, end, self.decoder_load('bond_decoders')[t])
                    # if '.' in Chem.MolToSmiles(mol, isomericSmiles=True):
                    #     mol.AddBond(start, end, self.decoder_load('bond_decoders')[t])
                    #     print(tt)
                    #     print(Chem.MolToSmiles(mol, isomericSmiles=True))

        return mol
    
    
        
    def label2onehot(self, labels, dim):
        
        """Convert label indices to one-hot vectors."""
        
        out = torch.zeros(list(labels.size())+[dim])
        out.scatter_(len(out.size())-1,labels.unsqueeze(-1),1.)
        
        return out.float() 
       
    def process(self, size= None):
        
        mols = [Chem.MolFromSmiles(line) for line in open(self.raw_files, 'r').readlines()]
     
        mols = list(filter(lambda x: x.GetNumAtoms() <= self.max_atom, mols))
        mols = mols[:size]
        indices = range(len(mols))
        
        self._generate_encoders_decoders(mols)
        
  
    
        pbar = tqdm(total=len(indices))
        pbar.set_description(f'Processing chembl dataset')
        max_length = max(mol.GetNumAtoms() for mol in mols)
        data_list = []
      
        self.m_dim = len(self.atom_decoder_m)
        for idx in indices:
            mol = mols[idx]
            A = self._genA(mol, connected=True, max_length=max_length)
            if A is not None:
                

                x = torch.from_numpy(self._genX(mol, max_length=max_length)).to(torch.long).view(1, -1)
          
                x = self.label2onehot(x,self.m_dim).squeeze()
                if self.features: 
                    f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1)
                    x = torch.concat((x,f), dim=-1)
             
                adjacency = torch.from_numpy(A)
                
                edge_index = adjacency.nonzero(as_tuple=False).t().contiguous()
                edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long)

                data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)

                if self.pre_filter is not None and not self.pre_filter(data):
                    continue

                if self.pre_transform is not None:
                    data = self.pre_transform(data)
                    
                data_list.append(data)
                pbar.update(1)

        pbar.close()

        torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file))



   
if __name__ == '__main__':
    data = DruggenDataset("DrugGEN/data")