File size: 3,864 Bytes
7ab1cfa
019978b
f7c5d29
7ab1cfa
019978b
 
 
7f96593
 
ad99e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb27d90
ad99e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb4b87
 
 
 
 
 
201412f
0bb4b87
 
ad99e6b
 
0bb4b87
 
ad99e6b
 
0bb4b87
 
1e8ab2e
f7c5d29
24a14ee
 
 
 
 
 
201412f
 
 
 
 
 
 
 
 
 
 
 
6e28a65
 
 
 
 
 
 
 
d66f370
eb3660f
 
 
 
6e28a65
847f6de
6e28a65
 
 
847f6de
f7c5d29
e01fd9a
f7c5d29
 
6e28a65
 
019978b
6e28a65
e01fd9a
 
 
f7c5d29
 
e01fd9a
eb3660f
e01fd9a
eb3660f
a303dc5
7c08841
eb3660f
a303dc5
 
7c08841
 
 
eb3660f
 
 
 
 
26b55ee
 
019978b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
from trainer import Trainer
import random

class DrugGENConfig:
    submodel='CrossLoss'
    act='relu'
    z_dim=16
    max_atom=45
    lambda_gp=1
    dim=128
    depth=1
    heads=8
    dec_depth=1
    dec_heads=8
    dec_dim=128
    mlp_ratio=3
    warm_up_steps=0
    dis_select='mlp'
    init_type='normal'
    batch_size=128
    epoch=50
    g_lr=0.00001
    d_lr=0.00001
    g2_lr=0.00001
    d2_lr=0.00001
    dropout=0.
    dec_dropout=0.
    n_critic=1
    beta1=0.9
    beta2=0.999
    resume_iters=None
    clipping_value=2
    features=False
    test_iters=10_000
    num_test_epoch=30_000
    inference_sample_num=1000
    num_workers=1
    mode="inference"
    inference_iterations=100
    inf_batch_size=1
    protein_data_dir='data/akt'
    drug_index='data/drug_smiles.index'
    drug_data_dir='data/akt'
    mol_data_dir='data'
    log_dir='experiments/logs'
    model_save_dir='experiments/models'
    # inference_model=""
    sample_dir='experiments/samples'
    result_dir="experiments/tboard_output"
    dataset_file="chembl45_train.pt"
    drug_dataset_file="akt_train.pt"
    raw_file='data/chembl_train.smi'
    drug_raw_file="data/akt_train.smi"
    inf_dataset_file="chembl45_test.pt"
    inf_drug_dataset_file='akt_test.pt'
    inf_raw_file='data/chembl_test.smi'
    inf_drug_raw_file="data/akt_test.smi"
    log_sample_step=1000
    set_seed=True
    seed=1
    resume=False
    resume_epoch=None
    resume_iter=None
    resume_directory=None
    
class ProtConfig(DrugGENConfig):
    submodel="Prot"
    inference_model="experiments/models/Prot"

class CrossLossConfig(DrugGENConfig):
    submodel="CrossLoss"
    inference_model="experiments/models/CrossLoss"

class NoTargetConfig(DrugGENConfig):
    submodel="NoTarget"
    inference_model="experiments/models/NoTarget"


model_configs = {
    "Prot": ProtConfig(),
    "CrossLoss": CrossLossConfig(),
    "NoTarget": NoTargetConfig(),
}


with st.sidebar:
    st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
    st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")


    with st.form("model_selection_from"):

        model_name = st.radio(
        "Select a model to make inference",
        ('Prot', 'CrossLoss', 'NoTarget'))

        molecule_num_input = st.number_input('Number of molecules to generate', min_value=1, max_value=100_000, value=1000, step=1)

        seed_input = st.number_input("Input a seed for reproducibiliy", min_value=0, value=random.randint(1, 1000), step=1)
        
        submitted = st.form_submit_button("Start Computing")


if submitted:

    config = model_configs[model_name]

    config.inference_sample_num = molecule_num_input
    config.seed = seed_input
    
    with st.spinner(f'Creating the trainer class instance for {model_name}...'):
        trainer = Trainer(config)
    with st.spinner(f'Running inference function of {model_name} (this may take a while) ...'):
        results = trainer.inference()
    st.success(f"Inference of {model_name} took {results['runtime']:.2f} seconds.")

    with st.expander("Expand to see scores"):

        st.write(f"Fraction valid: {results['fraction_valid']}")
        st.write(f"Uniqueness: {results['uniqueness']}")
        st.write(f"Novelty score: {results['novelty']}")

    with open(f'experiments/inference/{model_name}/inference_drugs.txt') as f:
        inference_drugs = f.read()
    st.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'{model_name}_inference.smi', mime="text/plain")

else:
    st.warning("Please select a model to make inference")