Spaces:
Running
Running
File size: 15,129 Bytes
4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 4c9e6d9 c724df9 d7fd6f0 c724df9 4c9e6d9 c724df9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import sys
import time
import random
import pickle
import argparse
import os.path as osp
import torch
import torch.utils.data
from torch_geometric.loader import DataLoader
import pandas as pd
from tqdm import tqdm
from rdkit import RDLogger, Chem
from rdkit.Chem import QED, RDConfig
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
from src.util.utils import *
from src.model.models import Generator
from src.data.dataset import DruggenDataset
from src.data.utils import get_encoders_decoders, load_molecules
from src.model.loss import generator_loss
from src.util.smiles_cor import smi_correct
class Inference(object):
"""Inference class for DrugGEN."""
def __init__(self, config):
if config.set_seed:
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(config.seed)
print(f'Using seed {config.seed}')
self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
# Initialize configurations
self.submodel = config.submodel
self.inference_model = config.inference_model
self.sample_num = config.sample_num
self.disable_correction = config.disable_correction
# Data loader.
self.inf_smiles = config.inf_smiles # SMILES containing text file for first dataset.
# Write the full path to file.
inf_smiles_basename = osp.basename(self.inf_smiles)
# Get the base name without extension and add max_atom to it
self.max_atom = config.max_atom # Model is based on one-shot generation.
inf_smiles_base = os.path.splitext(inf_smiles_basename)[0]
# Change extension from .smi to .pt and add max_atom to the filename
self.inf_dataset_file = f"{inf_smiles_base}{self.max_atom}.pt"
self.inf_batch_size = config.inf_batch_size
self.train_smiles = config.train_smiles
self.train_drug_smiles = config.train_drug_smiles
self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored.
self.dataset_name = self.inf_dataset_file.split(".")[0]
self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.)
# Additional node features can be added. Please check new_dataloarder.py Line 102.
# Get atom and bond encoders/decoders
self.atom_encoder, self.atom_decoder, self.bond_encoder, self.bond_decoder = get_encoders_decoders(
self.train_smiles,
self.train_drug_smiles,
self.max_atom
)
self.inf_dataset = DruggenDataset(self.mol_data_dir,
self.inf_dataset_file,
self.inf_smiles,
self.max_atom,
self.features,
atom_encoder=self.atom_encoder,
atom_decoder=self.atom_decoder,
bond_encoder=self.bond_encoder,
bond_decoder=self.bond_decoder)
self.inf_loader = DataLoader(self.inf_dataset,
shuffle=True,
batch_size=self.inf_batch_size,
drop_last=True) # PyG dataloader for the first GAN.
self.m_dim = len(self.atom_decoder) if not self.features else int(self.inf_loader.dataset[0].x.shape[1]) # Atom type dimension.
self.b_dim = len(self.bond_decoder) # Bond type dimension.
self.vertexes = int(self.inf_loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
# Model configurations.
self.act = config.act
self.dim = config.dim
self.depth = config.depth
self.heads = config.heads
self.mlp_ratio = config.mlp_ratio
self.dropout = config.dropout
self.build_model()
def build_model(self):
"""Create generators and discriminators."""
self.G = Generator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.dropout,
dim=self.dim,
depth=self.depth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
self.G.to(self.device)
self.print_network(self.G, 'G')
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, submodel, model_directory):
"""Restore the trained generator and discriminator."""
print('Loading the model...')
G_path = os.path.join(model_directory, '{}-G.ckpt'.format(submodel))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
def inference(self):
# Load the trained generator.
self.restore_model(self.submodel, self.inference_model)
# smiles data for metrics calculation.
chembl_smiles = [line for line in open(self.train_smiles, 'r').read().splitlines()]
chembl_test = [line for line in open(self.inf_smiles, 'r').read().splitlines()]
drug_smiles = [line for line in open(self.train_drug_smiles, 'r').read().splitlines()]
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
# Make directories if not exist.
if not os.path.exists("experiments/inference/{}".format(self.submodel)):
os.makedirs("experiments/inference/{}".format(self.submodel))
if not self.disable_correction:
correct = smi_correct(self.submodel, "experiments/inference/{}".format(self.submodel))
search_res = pd.DataFrame(columns=["submodel", "validity",
"uniqueness", "novelty",
"novelty_test", "drug_novelty",
"max_len", "mean_atom_type",
"snn_chembl", "snn_drug", "IntDiv", "qed", "sa"])
self.G.eval()
start_time = time.time()
metric_calc_dr = []
uniqueness_calc = []
real_smiles_snn = []
nodes_sample = torch.Tensor(size=[1, self.vertexes, 1]).to(self.device)
f = open("experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
f.write("SMILES")
f.write("\n")
val_counter = 0
none_counter = 0
# Inference mode
with torch.inference_mode():
pbar = tqdm(range(self.sample_num))
pbar.set_description('Inference mode for {} model started'.format(self.submodel))
for i, data in enumerate(self.inf_loader):
val_counter += 1
# Preprocess dataset
_, a_tensor, x_tensor = load_molecules(
data=data,
batch_size=self.inf_batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
_, _, node_sample, edge_sample = self.G(a_tensor, x_tensor)
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
fake_mol_g = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
a_tensor_sample = torch.max(a_tensor, -1)[1]
x_tensor_sample = torch.max(x_tensor, -1)[1]
real_mols = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=self.dataset_name)
for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
inference_drugs = [None if line is None else Chem.MolToSmiles(line) for line in fake_mol_g]
inference_drugs = [None if x is None else max(x.split('.'), key=len) for x in inference_drugs]
for molecules in inference_drugs:
if molecules is None:
none_counter += 1
for molecules in inference_drugs:
if molecules is not None:
molecules = molecules.replace("*", "C")
f.write(molecules)
f.write("\n")
uniqueness_calc.append(molecules)
nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1, self.vertexes, 1)), 0)
pbar.update(1)
metric_calc_dr.append(molecules)
real_smiles_snn.append(real_mols[0])
generation_number = len([x for x in metric_calc_dr if x is not None])
if generation_number == self.sample_num or none_counter == self.sample_num:
break
f.close()
print("Inference completed, starting metrics calculation.")
if not self.disable_correction:
corrected = correct.correct("experiments/inference/{}/inference_drugs.txt".format(self.submodel))
gen_smi = corrected["SMILES"].tolist()
else:
gen_smi = pd.read_csv("experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
et = time.time() - start_time
gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(x), 2, nBits=1024) for x in uniqueness_calc if Chem.MolFromSmiles(x) is not None]
real_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_smiles_snn if x is not None]
print("Inference mode is lasted for {:.2f} seconds".format(et))
print("Metrics calculation started using MOSES.")
if not self.disable_correction:
val = round(len(gen_smi)/self.sample_num, 3)
print("Validity: ", val, "\n")
else:
val = round(fraction_valid(gen_smi), 3)
print("Validity: ", val, "\n")
uniq = round(fraction_unique(gen_smi), 3)
nov = round(novelty(gen_smi, chembl_smiles), 3)
nov_test = round(novelty(gen_smi, chembl_test), 3)
drug_nov = round(novelty(gen_smi, drug_smiles), 3)
max_len = round(Metrics.max_component(gen_smi, self.vertexes), 3)
mean_atom = round(Metrics.mean_atom_type(nodes_sample), 3)
snn_chembl = round(average_agg_tanimoto(np.array(real_vecs), np.array(gen_vecs)), 3)
snn_drug = round(average_agg_tanimoto(np.array(drug_vecs), np.array(gen_vecs)), 3)
int_div = round((internal_diversity(np.array(gen_vecs)))[0], 3)
qed = round(np.mean([QED.qed(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
sa = round(np.mean([sascorer.calculateScore(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
print("Uniqueness: ", uniq, "\n")
print("Novelty: ", nov, "\n")
print("Novelty_test: ", nov_test, "\n")
print("Drug_novelty: ", drug_nov, "\n")
print("max_len: ", max_len, "\n")
print("mean_atom_type: ", mean_atom, "\n")
print("snn_chembl: ", snn_chembl, "\n")
print("snn_drug: ", snn_drug, "\n")
print("IntDiv: ", int_div, "\n")
print("QED: ", qed, "\n")
print("SA: ", sa, "\n")
print("Metrics are calculated.")
model_res = pd.DataFrame({"submodel": [self.submodel], "validity": [val],
"uniqueness": [uniq], "novelty": [nov],
"novelty_test": [nov_test], "drug_novelty": [drug_nov],
"max_len": [max_len], "mean_atom_type": [mean_atom],
"snn_chembl": [snn_chembl], "snn_drug": [snn_drug],
"IntDiv": [int_div], "qed": [qed], "sa": [sa]})
search_res = pd.concat([search_res, model_res], axis=0)
generatedsmiles = pd.DataFrame({"SMILES": gen_smi})
return model_res
if __name__=="__main__":
parser = argparse.ArgumentParser()
# Inference configuration.
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
parser.add_argument('--disable_correction', action='store_true', help='Disable SMILES correction')
# Data configuration.
parser.add_argument('--inf_smiles', type=str, required=True)
parser.add_argument('--train_smiles', type=str, required=True)
parser.add_argument('--train_drug_smiles', type=str, required=True)
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
parser.add_argument('--mol_data_dir', type=str, default='data')
parser.add_argument('--features', action='store_true', help='features dimension for nodes')
# Model configuration.
parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
# Seed configuration.
parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility')
parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
config = parser.parse_args()
inference = Inference(config)
inference.inference() |