Spaces:
Running
Running
File size: 8,836 Bytes
4c9e6d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class MLP(nn.Module):
"""
A simple Multi-Layer Perceptron (MLP) module consisting of two linear layers with a ReLU activation in between,
followed by a dropout on the output.
Attributes:
fc1 (nn.Linear): The first fully-connected layer.
act (nn.ReLU): ReLU activation function.
fc2 (nn.Linear): The second fully-connected layer.
droprateout (nn.Dropout): Dropout layer applied to the output.
"""
def __init__(self, in_feat, hid_feat=None, out_feat=None, dropout=0.):
"""
Initializes the MLP module.
Args:
in_feat (int): Number of input features.
hid_feat (int, optional): Number of hidden features. Defaults to in_feat if not provided.
out_feat (int, optional): Number of output features. Defaults to in_feat if not provided.
dropout (float, optional): Dropout rate. Defaults to 0.
"""
super().__init__()
# Set hidden and output dimensions to input dimension if not specified
if not hid_feat:
hid_feat = in_feat
if not out_feat:
out_feat = in_feat
self.fc1 = nn.Linear(in_feat, hid_feat)
self.act = nn.ReLU()
self.fc2 = nn.Linear(hid_feat, out_feat)
self.droprateout = nn.Dropout(dropout)
def forward(self, x):
"""
Forward pass for the MLP.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after applying the linear layers, activation, and dropout.
"""
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return self.droprateout(x)
class MHA(nn.Module):
"""
Multi-Head Attention (MHA) module of the graph transformer with edge features incorporated into the attention computation.
Attributes:
heads (int): Number of attention heads.
scale (float): Scaling factor for the attention scores.
q, k, v (nn.Linear): Linear layers to project the node features into query, key, and value embeddings.
e (nn.Linear): Linear layer to project the edge features.
d_k (int): Dimension of each attention head.
out_e (nn.Linear): Linear layer applied to the computed edge features.
out_n (nn.Linear): Linear layer applied to the aggregated node features.
"""
def __init__(self, dim, heads, attention_dropout=0.):
"""
Initializes the Multi-Head Attention module.
Args:
dim (int): Dimensionality of the input features.
heads (int): Number of attention heads.
attention_dropout (float, optional): Dropout rate for attention (not used explicitly in this implementation).
"""
super().__init__()
# Ensure that dimension is divisible by the number of heads
assert dim % heads == 0
self.heads = heads
self.scale = 1. / math.sqrt(dim) # Scaling factor for attention
# Linear layers for projecting node features
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
# Linear layer for projecting edge features
self.e = nn.Linear(dim, dim)
self.d_k = dim // heads # Dimension per head
# Linear layers for output transformations
self.out_e = nn.Linear(dim, dim)
self.out_n = nn.Linear(dim, dim)
def forward(self, node, edge):
"""
Forward pass for the Multi-Head Attention.
Args:
node (torch.Tensor): Node feature tensor of shape (batch, num_nodes, dim).
edge (torch.Tensor): Edge feature tensor of shape (batch, num_nodes, num_nodes, dim).
Returns:
tuple: (updated node features, updated edge features)
"""
b, n, c = node.shape
# Compute query, key, and value embeddings and reshape for multi-head attention
q_embed = self.q(node).view(b, n, self.heads, c // self.heads)
k_embed = self.k(node).view(b, n, self.heads, c // self.heads)
v_embed = self.v(node).view(b, n, self.heads, c // self.heads)
# Compute edge embeddings
e_embed = self.e(edge).view(b, n, n, self.heads, c // self.heads)
# Adjust dimensions for broadcasting: add singleton dimensions to queries and keys
q_embed = q_embed.unsqueeze(2) # Shape: (b, n, 1, heads, c//heads)
k_embed = k_embed.unsqueeze(1) # Shape: (b, 1, n, heads, c//heads)
# Compute attention scores
attn = q_embed * k_embed
attn = attn / math.sqrt(self.d_k)
attn = attn * (e_embed + 1) * e_embed # Modulated attention incorporating edge features
edge_out = self.out_e(attn.flatten(3)) # Flatten last dimension for linear layer
# Apply softmax over the node dimension to obtain normalized attention weights
attn = F.softmax(attn, dim=2)
v_embed = v_embed.unsqueeze(1) # Adjust dimensions to broadcast: (b, 1, n, heads, c//heads)
v_embed = attn * v_embed
v_embed = v_embed.sum(dim=2).flatten(2)
node_out = self.out_n(v_embed)
return node_out, edge_out
class Encoder_Block(nn.Module):
"""
Transformer encoder block that integrates node and edge features.
Consists of:
- A multi-head attention layer with edge modulation.
- Two MLP layers, each with residual connections and layer normalization.
Attributes:
ln1, ln3, ln4, ln5, ln6 (nn.LayerNorm): Layer normalization modules.
attn (MHA): Multi-head attention module.
mlp, mlp2 (MLP): MLP modules for further transformation of node and edge features.
"""
def __init__(self, dim, heads, act, mlp_ratio=4, drop_rate=0.):
"""
Initializes the encoder block.
Args:
dim (int): Dimensionality of the input features.
heads (int): Number of attention heads.
act (callable): Activation function (not explicitly used in this block, but provided for potential extensions).
mlp_ratio (int, optional): Ratio to determine the hidden layer size in the MLP. Defaults to 4.
drop_rate (float, optional): Dropout rate applied in the MLPs. Defaults to 0.
"""
super().__init__()
self.ln1 = nn.LayerNorm(dim)
self.attn = MHA(dim, heads, drop_rate)
self.ln3 = nn.LayerNorm(dim)
self.ln4 = nn.LayerNorm(dim)
self.mlp = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate)
self.mlp2 = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate)
self.ln5 = nn.LayerNorm(dim)
self.ln6 = nn.LayerNorm(dim)
def forward(self, x, y):
"""
Forward pass of the encoder block.
Args:
x (torch.Tensor): Node feature tensor.
y (torch.Tensor): Edge feature tensor.
Returns:
tuple: (updated node features, updated edge features)
"""
x1 = self.ln1(x)
x2, y1 = self.attn(x1, y)
x2 = x1 + x2
y2 = y + y1
x2 = self.ln3(x2)
y2 = self.ln4(y2)
x = self.ln5(x2 + self.mlp(x2))
y = self.ln6(y2 + self.mlp2(y2))
return x, y
class TransformerEncoder(nn.Module):
"""
Transformer Encoder composed of a sequence of encoder blocks.
Attributes:
Encoder_Blocks (nn.ModuleList): A list of Encoder_Block modules stacked sequentially.
"""
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1):
"""
Initializes the Transformer Encoder.
Args:
dim (int): Dimensionality of the input features.
depth (int): Number of encoder blocks to stack.
heads (int): Number of attention heads in each block.
act (callable): Activation function (passed to encoder blocks for potential use).
mlp_ratio (int, optional): Ratio for determining the hidden layer size in MLP modules. Defaults to 4.
drop_rate (float, optional): Dropout rate for the MLPs within each block. Defaults to 0.1.
"""
super().__init__()
self.Encoder_Blocks = nn.ModuleList([
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate)
for _ in range(depth)
])
def forward(self, x, y):
"""
Forward pass of the Transformer Encoder.
Args:
x (torch.Tensor): Node feature tensor.
y (torch.Tensor): Edge feature tensor.
Returns:
tuple: (final node features, final edge features) after processing through all encoder blocks.
"""
for block in self.Encoder_Blocks:
x, y = block(x, y)
return x, y |