Spaces:
Running
Running
File size: 9,801 Bytes
4c9e6d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
import torch.nn as nn
from src.model.layers import TransformerEncoder
class Generator(nn.Module):
"""
Generator network that uses a Transformer Encoder to process node and edge features.
The network first processes input node and edge features with separate linear layers,
then applies a Transformer Encoder to model interactions, and finally outputs both transformed
features and readout samples.
"""
def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio):
"""
Initializes the Generator.
Args:
act (str): Type of activation function to use ("relu", "leaky", "sigmoid", or "tanh").
vertexes (int): Number of vertexes in the graph.
edges (int): Number of edge features.
nodes (int): Number of node features.
dropout (float): Dropout rate.
dim (int): Dimensionality used for intermediate features.
depth (int): Number of Transformer encoder blocks.
heads (int): Number of attention heads in the Transformer.
mlp_ratio (int): Ratio for determining hidden layer size in MLP modules.
"""
super(Generator, self).__init__()
self.vertexes = vertexes
self.edges = edges
self.nodes = nodes
self.depth = depth
self.dim = dim
self.heads = heads
self.mlp_ratio = mlp_ratio
self.dropout = dropout
# Set the activation function based on the provided string
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
# Calculate the total number of features and dimensions for transformer
self.features = vertexes * vertexes * edges + vertexes * nodes
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
self.node_layers = nn.Sequential(
nn.Linear(nodes, 64), act,
nn.Linear(64, dim), act,
nn.Dropout(self.dropout)
)
self.edge_layers = nn.Sequential(
nn.Linear(edges, 64), act,
nn.Linear(64, dim), act,
nn.Dropout(self.dropout)
)
self.TransformerEncoder = TransformerEncoder(
dim=self.dim, depth=self.depth, heads=self.heads, act=act,
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout
)
self.readout_e = nn.Linear(self.dim, edges)
self.readout_n = nn.Linear(self.dim, nodes)
self.softmax = nn.Softmax(dim=-1)
def forward(self, z_e, z_n):
"""
Forward pass of the Generator.
Args:
z_e (torch.Tensor): Edge features tensor of shape (batch, vertexes, vertexes, edges).
z_n (torch.Tensor): Node features tensor of shape (batch, vertexes, nodes).
Returns:
tuple: A tuple containing:
- node: Updated node features after the transformer.
- edge: Updated edge features after the transformer.
- node_sample: Readout sample from node features.
- edge_sample: Readout sample from edge features.
"""
b, n, c = z_n.shape
# The fourth dimension of edge features
_, _, _, d = z_e.shape
# Process node and edge features through their respective layers
node = self.node_layers(z_n)
edge = self.edge_layers(z_e)
# Symmetrize the edge features by averaging with its transpose along vertex dimensions
edge = (edge + edge.permute(0, 2, 1, 3)) / 2
# Pass the features through the Transformer Encoder
node, edge = self.TransformerEncoder(node, edge)
# Readout layers to generate final outputs
node_sample = self.readout_n(node)
edge_sample = self.readout_e(edge)
return node, edge, node_sample, edge_sample
class Discriminator(nn.Module):
"""
Discriminator network that evaluates node and edge features.
It processes features with linear layers, applies a Transformer Encoder to capture dependencies,
and finally predicts a scalar value using an MLP on aggregated node features.
This class is used in DrugGEN model.
"""
def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio):
"""
Initializes the Discriminator.
Args:
act (str): Activation function type ("relu", "leaky", "sigmoid", or "tanh").
vertexes (int): Number of vertexes.
edges (int): Number of edge features.
nodes (int): Number of node features.
dropout (float): Dropout rate.
dim (int): Dimensionality for intermediate representations.
depth (int): Number of Transformer encoder blocks.
heads (int): Number of attention heads.
mlp_ratio (int): MLP ratio for hidden layer dimensions.
"""
super(Discriminator, self).__init__()
self.vertexes = vertexes
self.edges = edges
self.nodes = nodes
self.depth = depth
self.dim = dim
self.heads = heads
self.mlp_ratio = mlp_ratio
self.dropout = dropout
# Set the activation function
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
self.features = vertexes * vertexes * edges + vertexes * nodes
self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
# Define layers for processing node and edge features
self.node_layers = nn.Sequential(
nn.Linear(nodes, 64), act,
nn.Linear(64, dim), act,
nn.Dropout(self.dropout)
)
self.edge_layers = nn.Sequential(
nn.Linear(edges, 64), act,
nn.Linear(64, dim), act,
nn.Dropout(self.dropout)
)
# Transformer Encoder for modeling node and edge interactions
self.TransformerEncoder = TransformerEncoder(
dim=self.dim, depth=self.depth, heads=self.heads, act=act,
mlp_ratio=self.mlp_ratio, drop_rate=self.dropout
)
# Calculate dimensions for node features aggregation
self.node_features = vertexes * dim
self.edge_features = vertexes * vertexes * dim
# MLP to predict a scalar value from aggregated node features
self.node_mlp = nn.Sequential(
nn.Linear(self.node_features, 64), act,
nn.Linear(64, 32), act,
nn.Linear(32, 16), act,
nn.Linear(16, 1)
)
def forward(self, z_e, z_n):
"""
Forward pass of the Discriminator.
Args:
z_e (torch.Tensor): Edge features tensor of shape (batch, vertexes, vertexes, edges).
z_n (torch.Tensor): Node features tensor of shape (batch, vertexes, nodes).
Returns:
torch.Tensor: Prediction scores (typically a scalar per sample).
"""
b, n, c = z_n.shape
# Unpack the shape of edge features (not used further directly)
_, _, _, d = z_e.shape
# Process node and edge features separately
node = self.node_layers(z_n)
edge = self.edge_layers(z_e)
# Symmetrize edge features by averaging with its transpose
edge = (edge + edge.permute(0, 2, 1, 3)) / 2
# Process features through the Transformer Encoder
node, edge = self.TransformerEncoder(node, edge)
# Flatten node features for MLP
node = node.view(b, -1)
# Predict a scalar score using the node MLP
prediction = self.node_mlp(node)
return prediction
class simple_disc(nn.Module):
"""
A simplified discriminator that processes flattened features through an MLP
to predict a scalar score.
This class is used in NoTarget model.
"""
def __init__(self, act, m_dim, vertexes, b_dim):
"""
Initializes the simple discriminator.
Args:
act (str): Activation function type ("relu", "leaky", "sigmoid", or "tanh").
m_dim (int): Dimensionality for atom type features.
vertexes (int): Number of vertexes.
b_dim (int): Dimensionality for bond type features.
"""
super().__init__()
# Set the activation function and check if it's supported
if act == "relu":
act = nn.ReLU()
elif act == "leaky":
act = nn.LeakyReLU()
elif act == "sigmoid":
act = nn.Sigmoid()
elif act == "tanh":
act = nn.Tanh()
else:
raise ValueError("Unsupported activation function: {}".format(act))
# Compute total number of features combining both dimensions
features = vertexes * m_dim + vertexes * vertexes * b_dim
print(vertexes)
print(m_dim)
print(b_dim)
print(features)
self.predictor = nn.Sequential(
nn.Linear(features, 256), act,
nn.Linear(256, 128), act,
nn.Linear(128, 64), act,
nn.Linear(64, 32), act,
nn.Linear(32, 16), act,
nn.Linear(16, 1)
)
def forward(self, x):
"""
Forward pass of the simple discriminator.
Args:
x (torch.Tensor): Input features tensor.
Returns:
torch.Tensor: Prediction scores.
"""
prediction = self.predictor(x)
return prediction |